Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Paediatr Anaesth ; 24(6): 591-601, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24666686

RESUMO

BACKGROUND: The lack of methadone pharmacokinetic data in children and neonates restrains dosing to achieve the target concentration in these populations. A minimum effective analgesic concentration of methadone in opioid naïve adults is 0.058 mg·l(-1) , while no withdrawal symptoms were observed in neonates suffering opioid withdrawal if plasma concentrations of methadone were above 0.06 mg·l(-1) . The racemate of methadone which is commonly used in pediatric and anesthetic care is metabolized to 2-ethylidine-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) and 2-ethyl-5-methyl-3,3-diphenylpyrroline (EMDP). METHODS: Data from four studies (age 33-week PMA-15 years) were pooled (n = 56) for compartment analysis using nonlinear mixed effects modeling. Parameter estimates were standardized to a 70-kg person using an allometric model approach. Investigation was made of the racemate and metabolite (EDDP and EMDP) dispositions. In addition, neonatal data (n = 7) allowed further study of R- and S-enantiomer pharmacokinetics. RESULTS: A three-compartment linear disposition model best described the observed time-concentration profiles with additional compartments for metabolites. Population parameter estimates (between-subject variability) were central volume (V1) 21.5 (29%) l.70 kg(-1) , peripheral volumes of distribution V2 75.1 (23%) l.70 kg(-1) and V3 484 (8%) l.70 kg(-1) , clearance (CL) 9.45 (11%) l·h(-1) .70 kg(-1) , and intercompartment clearances Q2 325 (21%) l·h(-1) .70 kg(-1) and Q3 136 (14%) l·h(-1) .70 kg(-1) . EDDP formation clearance was 9.1 (11%) l·h(-1) .70 kg(-1) , formation clearance of EMDP from EDDP 7.4 (63%) l·h(-1) .70 kg(-1) , elimination clearance of EDDP was 40.9 (26%) l·h(-1) .70 kg(-1) and the rate constant for intermediate compartments 2.17 (43%) h(-1) . CONCLUSIONS: Current pharmacokinetic parameter estimates in children and neonates are similar to those reported in adults. There was no clearance maturation with age. Neonatal enantiomer clearances were similar to those described in adults. A regimen of 0.2 mg·kg(-1) per 8 h in neonates achieves a target concentration of 0.06 mg·l(-1) within 36 h. Infusion, rather than intermittent dosing, should be considered if this target is to be achieved in older children after cardiac surgery.


Assuntos
Envelhecimento/metabolismo , Analgésicos Opioides/farmacocinética , Metadona/farmacocinética , Adolescente , Algoritmos , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/química , Criança , Pré-Escolar , Simulação por Computador , Eletrocardiografia/efeitos dos fármacos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metadona/efeitos adversos , Metadona/química , Estereoisomerismo
2.
J Control Release ; 120(3): 220-32, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17574289

RESUMO

Ligand regulated localization controllable protein constructs were optimized in this study. Several constructs were made from a classical nuclear export signal (HIV-rev, MAPKK, or progesterone receptor) in combination with a SV40 T-antigen type nuclear import signal. Different ligand binding domains (LBDs from glucocorticoid receptor or progesterone receptor) were also tested for their ability to impart control over localization of proteins. This study was designed to create constructs which are cytoplasmic in the absence of ligand and nuclear in the presence of ligand, and also to regulate the amount of protein translocating to the nucleus on ligand induction. The balance between the strengths of import and export signals was critical for overall localization of proteins. The amount of protein entering the nucleus was also affected by the dose of ligand (10-100 nM). However, the overall import characteristics were determined by the strengths of localization signals and the inherent localization properties of the LBD used. This study established that the amount of protein present in a particular compartment can be regulated by the use of localization signals of various strengths. These optimized localization controllable protein constructs can be used to correct for diseases due to aberrant localization of proteins.


Assuntos
Núcleo Celular/metabolismo , Sinais de Exportação Nuclear/fisiologia , Proteínas/metabolismo , Transporte Ativo do Núcleo Celular , Adenocarcinoma/patologia , Sequência de Aminoácidos , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Dexametasona , Eletroporação , Produtos do Gene rev/genética , Produtos do Gene rev/metabolismo , Ligantes , Camundongos , Mifepristona , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Plasmídeos , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA