Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 65(2): 138-145, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34586618

RESUMO

Gene and cell therapies have shown tremendous advancement in the last 5 years. Prominent examples include the successful use of CRISPR-edited stem cells for treating blood disorders like sickle cell anemia and beta-thalassemia, and ongoing clinical trials for treating blindness. This mini-review assesses the status of CRISPR-based therapies, both in vivo and ex vivo, and the challenges associated with clinical translation. In vivo CRISPR therapies have been used to treat eye and liver diseases due to the practicality of delivering editing components to the target tissue. In contrast, even though ex vivo CRISPR therapy involves cell isolation, expansion, and infusion, its advantages include characterizing the gene edits before infusion and restricting off-target effects in other tissues. Further, the safety, affordability, and feasibility of CRISPR therapies, especially for treating large number of patients, are discussed.


Assuntos
Anemia Falciforme , Edição de Genes , Humanos , Sistemas CRISPR-Cas , Terapia Genética , Anemia Falciforme/genética , Anemia Falciforme/terapia , Separação Celular
2.
Sci Adv ; 8(35): eabn2082, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044573

RESUMO

Endothelial specification is a key event during embryogenesis; however, when, and how, endothelial cells separate from other lineages is poorly understood. In zebrafish, Npas4l is indispensable for endothelial specification by inducing the expression of the transcription factor genes etsrp, tal1, and lmo2. We generated a knock-in reporter in zebrafish npas4l to visualize endothelial progenitors and their derivatives in wild-type and mutant embryos. Unexpectedly, we find that in npas4l mutants, npas4l reporter-expressing cells contribute to the pronephron tubules. Single-cell transcriptomics and live imaging of the early lateral plate mesoderm in wild-type embryos indeed reveals coexpression of endothelial and pronephron markers, a finding confirmed by creERT2-based lineage tracing. Increased contribution of npas4l reporter-expressing cells to pronephron tubules is also observed in tal1 and lmo2 mutants and is reversed in npas4l mutants injected with tal1 mRNA. Together, these data reveal that Npas4l/Tal1/Lmo2 regulate the fate decision between the endothelial and pronephron lineages.

3.
Zebrafish ; 18(6): 369-373, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34495758

RESUMO

Genetically encoded fluorescent tags such as green fluorescent protein fused to protein have revolutionized cell biology as they permit high-resolution protein imaging in live systems. Split fluorescent proteins, with a small fragment of 16 amino acids, can be inserted in the coding sequence to label proteins. We demonstrate successful integration of two bright and fast maturing split fluorescent proteins, mNeon green and sfCherry2, in zebrafish, and show that they are suitable for live imaging, including time-lapse series, and that they have a high signal-to-noise ratio. Furthermore, we show that CRISPR/Cas9 can be used to generate fluorescently tagged proteins in vivo.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Animais , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Nat Commun ; 12(1): 1125, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602923

RESUMO

Conditional gene inactivation is a powerful tool to determine gene function when constitutive mutations result in detrimental effects. The most commonly used technique to achieve conditional gene inactivation employs the Cre/loxP system and its ability to delete DNA sequences flanked by two loxP sites. However, targeting a gene with two loxP sites is time and labor consuming. Here, we show Cre-Controlled CRISPR (3C) mutagenesis to circumvent these issues. 3C relies on gRNA and Cre-dependent Cas9-GFP expression from the same transgene. Exogenous or transgenic supply of Cre results in Cas9-GFP expression and subsequent mutagenesis of the gene of interest. The recombined cells become fluorescently visible enabling their isolation and subjection to various omics techniques. Hence, 3C mutagenesis provides a valuable alternative to the production of loxP-flanked alleles. It might even enable the conditional inactivation of multiple genes simultaneously and should be applicable to other model organisms amenable to single integration transgenesis.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Inativação Gênica , Integrases/metabolismo , Mutagênese/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Olho/embriologia , Olho/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Monofenol Mono-Oxigenase/genética , Pigmentação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transgenes
5.
Dev Cell ; 56(4): 509-524.e9, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33412105

RESUMO

In mammals, perivascular cell-derived scarring after spinal cord injury impedes axonal regrowth. In contrast, the extracellular matrix (ECM) in the spinal lesion site of zebrafish is permissive and required for axon regeneration. However, the cellular mechanisms underlying this interspecies difference have not been investigated. Here, we show that an injury to the zebrafish spinal cord triggers recruitment of pdgfrb+ myoseptal and perivascular cells in a PDGFR signaling-dependent manner. Interference with pdgfrb+ cell recruitment or depletion of pdgfrb+ cells inhibits axonal regrowth and recovery of locomotor function. Transcriptional profiling and functional experiments reveal that pdgfrb+ cells upregulate expression of axon growth-promoting ECM genes (cthrc1a and col12a1a/b) and concomitantly reduce synthesis of matrix molecules that are detrimental to regeneration (lum and mfap2). Our data demonstrate that a switch in ECM composition is critical for axon regeneration after spinal cord injury and identify the cellular source and components of the growth-promoting lesion ECM.


Assuntos
Axônios/metabolismo , Cicatriz/patologia , Matriz Extracelular/metabolismo , Regeneração Nervosa , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Medula Espinal/patologia , Peixe-Zebra/fisiologia , Animais , Cicatriz/fisiopatologia , Modelos Biológicos , Recuperação de Função Fisiológica , Transdução de Sinais , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Proteínas de Peixe-Zebra/metabolismo
6.
Cell Tissue Res ; 383(3): 987-1002, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33367974

RESUMO

Extracellular signals play essential roles during embryonic patterning by providing positional information in a concentration-dependent manner, and many such signals, like Wnt, fibroblast growth factor (FGF), Hedgehog (Hh), and retinoic acid, act by being secreted into the extracellular space, thereby triggering receptor-mediated responses in other cells. Isthmin1 (ism1) is a secreted protein whose gene expression pattern coincides with that of early dorsal determinants, nodal ligand genes like sqt and cyc, and with fgf8 during various phases of zebrafish development. Ism1 functions in early embryonic patterning and development are poorly understood; however, it has recently been shown to interact with nodal pathway genes to control organ asymmetry in chicken. Here, we show that misexpression of ism1 deletion constructs disrupts embryonic patterning in zebrafish and exhibits genetic interactions with both Fgf and nodal signaling. Unlike Fgf and nodal pathway mutants, CRISPR/Cas9-engineered ism1 mutants did not show obvious developmental defects. Further, in vivo single molecule fluorescence correlation spectroscopy (FCCS) showed that Ism1 diffuses freely in the extra-cellular space, with a diffusion coefficient similar to that of Fgf8a; however, our measurements do not support direct molecular interactions between Ism1 and either nodal ligands or Fgf8a in the developing zebrafish embryo. Together, data from gain- and loss-of-function experiments suggest that zebrafish Ism1 plays a complex role in regulating extracellular signals during early embryonic development.


Assuntos
Animais Geneticamente Modificados/embriologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento
7.
EMBO Rep ; 21(12): e50612, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33140917

RESUMO

The thyroid gland regulates growth and metabolism via production of thyroid hormone in follicles composed of thyrocytes. So far, thyrocytes have been assumed to be a homogenous population. To uncover heterogeneity in the thyrocyte population and molecularly characterize the non-thyrocyte cells surrounding the follicle, we developed a single-cell transcriptome atlas of the region containing the zebrafish thyroid gland. The 6249-cell atlas includes profiles of thyrocytes, blood vessels, lymphatic vessels, immune cells, and fibroblasts. Further, the thyrocytes show expression heterogeneity, including bimodal expression of the transcription factor pax2a. To validate thyrocyte heterogeneity, we generated a CRISPR/Cas9-based pax2a knock-in line that monitors pax2a expression in the thyrocytes. A population of pax2a-low mature thyrocytes interspersed in individual follicles can be distinguished. We corroborate heterogeneity within the thyrocyte population using RNA sequencing of pax2a-high and pax2a-low thyrocytes, which demonstrates 20% differential expression in transcriptome between the two subpopulations. Our results identify and validate transcriptional differences within the presumed homogenous thyrocyte population.


Assuntos
Células Epiteliais da Tireoide , Glândula Tireoide , Animais , Perfilação da Expressão Gênica , Transcriptoma , Peixe-Zebra/genética
8.
Development ; 147(11)2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439756

RESUMO

The formation and maintenance of sharp boundaries between groups of cells play a vital role during embryonic development as they serve to compartmentalize cells with similar fates. Some of these boundaries also act as organizers, with the ability to induce specific cell fates and morphogenesis in the surrounding cells. The midbrain-hindbrain boundary (MHB) is such an organizer: it acts as a lineage restriction boundary to prevent the intermingling of cells with different developmental fates. However, the mechanisms underlying the lineage restriction process remain unclear. Here, using novel fluorescent knock-in reporters, live imaging, Cre/lox-mediated lineage tracing, atomic force microscopy-based cell adhesion assays and mutant analysis, we analyze the process of lineage restriction at the MHB and provide mechanistic details. Specifically, we show that lineage restriction occurs by the end of gastrulation, and that the subsequent formation of sharp gene expression boundaries in the developing MHB occur through complementary mechanisms, i.e. cell-fate plasticity and cell sorting. Furthermore, we show that cell sorting at the MHB involves differential adhesion among midbrain and hindbrain cells that is mediated by N-cadherin and Eph-ephrin signaling.


Assuntos
Adesão Celular/fisiologia , Mesencéfalo/metabolismo , Rombencéfalo/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas/genética , Caderinas/genética , Caderinas/metabolismo , Linhagem da Célula , Embrião não Mamífero/metabolismo , Efrinas/antagonistas & inibidores , Efrinas/genética , Efrinas/metabolismo , Gastrulação , Edição de Genes , Mesencéfalo/patologia , Microscopia de Força Atômica , Microscopia de Fluorescência , Morfolinos/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Rombencéfalo/patologia , Transdução de Sinais , Imagem com Lapso de Tempo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Cell Tissue Res ; 372(1): 41-50, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29435650

RESUMO

New genome-editing approaches, such as the CRISPR/Cas system, have opened up great opportunities to insert or delete genes at targeted loci and have revolutionized genetics in model organisms like the zebrafish. The Cre-loxp recombination system is widely used to activate or inactivate genes with high spatial and temporal specificity. Using a CRISPR/Cas9-mediated knock-in strategy, we inserted a zebrafish codon-optimized CreER T2 transgene at the otx2 gene locus to generate a conditional Cre-driver line. We chose otx2 as it is a patterning gene of the anterior neural plate that is expressed during early development. By knocking in CreER T2 upstream of the endogenous ATG of otx2, we utilized this gene's native promoter and enhancer elements to perfectly match CreER T2 and endogenous otx2 expression patterns. Next, by combining this novel driver line with a Cre-dependent reporter line, we show that only in the presence of tamoxifen can efficient Cre-loxp-mediated recombination be achieved in the anterior neural plate-derived tissues like the telencephalon, the eye and the optic tectum. Our results imply that the otx2:CreER T2 transgenic fish will be a valuable tool for lineage tracing and conditional mutant studies in larval and adult zebrafish.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Introdução de Genes , Marcação de Genes , Integrases/metabolismo , Peixe-Zebra/genética , Animais , Sequência de Bases , Expressão Gênica , Loci Gênicos , Mesencéfalo/citologia , Fatores de Transcrição Otx/genética , Prosencéfalo/citologia , Recombinação Genética/genética , Proteínas de Peixe-Zebra/genética
10.
Front Neuroanat ; 11: 52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713249

RESUMO

The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.

11.
Development ; 141(3): 685-96, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24449844

RESUMO

Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that ß cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in ß cells inhibits ß cell delamination and differentiation. These processes are normally associated with junctional actin and cell-cell junction disassembly and the expression of fate-determining transcription factors, such as Isl1 and MafA. Mechanistically, we demonstrate that genetic ablation of N-WASP in ß cells expressing constitutively active Cdc42 partially restores both delamination and ß cell differentiation. These findings elucidate how junctional actin dynamics via Cdc42/N-WASP signaling cell-autonomously control not only epithelial delamination but also cell differentiation during mammalian organogenesis.


Assuntos
Actinas/metabolismo , Diferenciação Celular , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Transdução de Sinais , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Epitélio/metabolismo , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Junções Intercelulares/metabolismo , Junções Intercelulares/patologia , Camundongos , Ratos , Imagem com Lapso de Tempo
12.
Genesis ; 48(6): 374-81, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20533404

RESUMO

The cadherin family of cell adhesion molecules mediates adhesive interactions that are required for the formation and maintenance of tissues. Previously, we demonstrated that N-cadherin, which is required for numerous morphogenetic processes, is expressed in the pancreatic epithelium at E9.5, but later becomes restricted to endocrine aggregates in mice. To study the role of N-cadherin during pancreas formation and function we generated a tissue-specific knockout of N-cadherin in the early pancreatic epithelium by inter-crossing N-cadherin-floxed mice with Pdx1Cre mice. Analysis of pancreas-specific ablation of N-cadherin demonstrates that N-cadherin is dispensable for pancreatic development, but required for beta-cell granule turnover. The number of insulin secretory granules is significantly reduced in N-cadherin-deficient beta-cells, and as a consequence insulin secretion is decreased.


Assuntos
Caderinas/fisiologia , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Células Secretoras de Insulina/metabolismo , Pâncreas/crescimento & desenvolvimento , Transativadores/fisiologia , Animais , Feminino , Imunofluorescência , Immunoblotting , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pâncreas/metabolismo
13.
Cell ; 139(4): 791-801, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914171

RESUMO

Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Organogênese , Pâncreas/embriologia , Animais , Polaridade Celular , Células Epiteliais/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Knockout , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas Exócrino/citologia , Pâncreas Exócrino/embriologia , Pâncreas Exócrino/metabolismo , Células-Tronco/metabolismo , Quinases Associadas a rho/metabolismo
14.
BMC Dev Biol ; 9: 2, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19126201

RESUMO

BACKGROUND: Pancreatic islets of Langerhans originate from endocrine progenitors within the pancreatic ductal epithelium. Concomitant with differentiation of these progenitors into hormone-producing cells such cells delaminate, aggregate and migrate away from the ductal epithelium. The cellular and molecular mechanisms regulating islet cell delamination and cell migration are poorly understood. Extensive biochemical and cell biological studies using cultured cells demonstrated that Rac1, a member of the Rho family of small GTPases, acts as a key regulator of cell migration. RESULTS: To address the functional role of Rac1 in islet morphogenesis, we generated transgenic mice expressing dominant negative Rac1 under regulation of the Rat Insulin Promoter. Blocking Rac1 function in beta cells inhibited their migration away from the ductal epithelium in vivo. Consistently, transgenic islet cell spreading was compromised in vitro. We also show that the EGF-receptor ligand betacellulin induced actin remodelling and cell spreading in wild-type islets, but not in transgenic islets. Finally, we demonstrate that cell-cell contact E-cadherin increased as a consequence of blocking Rac1 activity. CONCLUSION: Our data support a model where Rac1 signalling controls islet cell migration by modulating E-cadherin-mediated cell-cell adhesion. Furthermore, in vitro experiments show that betacellulin stimulated islet cell spreading and actin remodelling is compromised in transgenic islets, suggesting that betacellulin may act as a regulator of Rac1 activity and islet migration in vivo. Our results further emphasize Rac1 as a key regulator of cell migration and cell adhesion during tissue and organ morphogenesis.


Assuntos
Movimento Celular/fisiologia , Ilhotas Pancreáticas/embriologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Morfogênese/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Betacelulina , Glicemia/metabolismo , Peso Corporal , Caderinas/metabolismo , Receptores ErbB/metabolismo , Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , RNA Mensageiro/metabolismo , Ratos , Proteínas rac1 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA