Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 79(4): 689-698, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718357

RESUMO

EGFR-activating mutations are observed in approximately 15% to 20% of patients with non-small cell lung cancer. Tyrosine kinase inhibitors have provided an illustrative example of the successes in targeting oncogene addiction in cancer and the role of tumor-specific adaptations conferring therapeutic resistance. The compound osimertinib is a third-generation tyrosine kinase inhibitor, which was granted full FDA approval in March 2017 based on targeting EGFR T790M resistance. The compound has received additional FDA approval as first-line therapy with improvement in progression-free survival by suppressing the activating mutation and preventing the rise of the dominant resistance clone. Drug development has been breathtaking in this space with other third-generation compounds at various stages of development: rociletinib (CO-1686), olmutinib (HM61713), nazartinib (EGF816), naquotinib (ASP8273), mavelertinib (PF-0647775), and AC0010. However, therapeutic resistance after the administration of third-generation inhibitors is complex and not fully understood, with significant intertumoral and intratumoral heterogeneity. Repeat tissue and plasma analyses on therapy have revealed insights into multiple mechanisms of resistance, including novel second site EGFR mutations, activated bypass pathways such as MET amplification, HER2 amplification, RAS mutations, BRAF mutations, PIK3CA mutations, and novel fusion events. Strategies to understand and predict patterns of mutagenesis are still in their infancy; however, technologies to understand synthetically lethal dependencies and track cancer evolution through therapy are being explored. The expansion of combinatorial therapies is a direction forward targeting minimal residual disease and bypass pathways early based on projected resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/patologia , Prognóstico
2.
Cancer Res ; 79(6): 1204-1213, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30573519

RESUMO

With the advent of precision oncology, there is an urgent need to develop improved methods for rapidly detecting responses to targeted therapies. Here, we have developed an ultrasensitive measure of cell-free tumor load using targeted and whole-genome sequencing approaches to assess responses to tyrosine kinase inhibitors in patients with advanced lung cancer. Analyses of 28 patients treated with anti-EGFR or HER2 therapies revealed a bimodal distribution of cell-free circulating tumor DNA (ctDNA) after therapy initiation, with molecular responders having nearly complete elimination of ctDNA (>98%). Molecular nonresponders displayed limited changes in ctDNA levels posttreatment and experienced significantly shorter progression-free survival (median 1.6 vs. 13.7 months, P < 0.0001; HR = 66.6; 95% confidence interval, 13.0-341.7), which was detected on average 4 weeks earlier than CT imaging. ctDNA analyses of patients with radiographic stable or nonmeasurable disease improved prediction of clinical outcome compared with CT imaging. These analyses provide a rapid approach for evaluating therapeutic response to targeted therapies and have important implications for the management of patients with cancer and the development of new therapeutics.Significance: Cell-free tumor load provides a novel approach for evaluating longitudinal changes in ctDNA during systemic treatment with tyrosine kinase inhibitors and serves an unmet clinical need for real-time, noninvasive detection of tumor response to targeted therapies before radiographic assessment.See related commentary by Zou and Meyerson, p. 1038.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/análise , DNA de Neoplasias/análise , Terapia de Alvo Molecular , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , DNA Tumoral Circulante/genética , DNA de Neoplasias/genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA