Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39182801

RESUMO

Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.

2.
Adv Colloid Interface Sci ; 329: 103197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781827

RESUMO

The semiconductor industry has long been driven by advances in a nanofabrication technology known as lithography, and the fabrication of nanostructures on chips relies on an important coating, the photoresist layer. Photoresists are typically spin-coated to form a film and have a photolysis solubility transition and etch resistance that allow for rapid fabrication of nanostructures. As a result, photoresists have attracted great interest in both fundamental research and industrial applications. Currently, the semiconductor industry has entered the era of extreme ultraviolet lithography (EUVL) and expects photoresists to be able to fabricate sub-10 nm structures. In order to realize sub-10 nm nanofabrication, the development of photoresists faces several challenges in terms of sensitivity, etch resistance, and molecular size. In this paper, three types of lithographic mechanisms are reviewed to provide strategies for designing photoresists that can enable high-resolution nanofabrication. The discussion of the current state of the art in optical lithography is presented in depth. Practical applications of photoresists and related recent advances are summarized. Finally, the current achievements and remaining issues of photoresists are discussed and future research directions are envisioned.

3.
Environ Sci Pollut Res Int ; 29(5): 6633-6645, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34455562

RESUMO

To enhance the dye removal efficiency by natural enzyme, horseradish peroxidase (HRP) was immobilized onto amine-functionalized superparamagnetic iron oxide and used as a biocatalyst for the oxidative degradation of acid black-HC dye. The anchored enzyme was characterized by vibrating sample magnetometry, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, scanning electron microscopy, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda methods, nitrogen adsorption-desorption measurements, Zeta potential, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The Michaelis constant values of free and immobilized HRP were determined to be 4.5 and 5 mM for hydrogen peroxide and 12.5 and 10 mM for guaiacol, respectively. Moreover, the maximum values of free and immobilized HRP were 2.4 and 2 U for H2O2, respectively, and 1.25 U for guaiacol. The immobilized enzyme was thermally stable up to 60°C, whereas the free peroxidase was stable only up to 40°C. In the catalytic experiment, the immobilized HRP exhibited superior catalytic activity compared with that of free HRP for the oxidative decolorization and removal of acid black-HC dye. The influence of experimental parameters such as the catalyst dosage, pH, H2O2 concentration, and temperature on the removal efficiency was investigated. The reaction followed second-order kinetics, and the thermodynamic activation parameters were determined.


Assuntos
Enzimas Imobilizadas , Peróxido de Hidrogênio , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Temperatura
4.
Environ Sci Pollut Res Int ; 27(26): 32341-32358, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31707614

RESUMO

Fe3O4 NPs are synthesized by the co-precipitation technique. Moreover, the pristine was coated by silica layer and then functionalized by 3-aminopropyltrimethoxysilane (APTS). The sample possessed saturation magnetization with value equals 37 emu/g which made them to easily separate using external magnet. FT-IR, TGA, EDX, and VSM confirmed the aminosilane loading. The surface topography and composition were characterized using XRD, TEM, SEM, BJH, and BET methods. Where adsorption capacity of the surface toward the removal of four commercial reactive wool dyes (RD), Itowol black (IB), Itowol Red (IR), Sunzol black (SB), and Lanasol blue (LB) have been investigated. The influence variables such as pH, adsorbent dose, dye concentration, and temperature were calculated. Where experimental results fitted to Langmuir isotherm model with qmax equals 161.29, 151.51, 123.45, and 98.20 mg/g, for IR, LB, SB, and IB respectively. The results showed that the RD adsorption described by pseudo-second-order kinetics. The calculated thermodynamic parameters indicated that RD adsorption onto Fe3O4@SiO2-NH2 was spontaneous and exothermic in nature. The possible mechanisms monitoring RD adsorption on the surface included hydrogen bonding and electrostatic interactions. The reusability of adsorbent carried with four cycles without releasing of magnetite and thus excluding the potential hazardous of nanomaterial to the environment. Graphical abstract.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Aminas , Animais , Corantes , Óxido Ferroso-Férrico , Cinética , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier ,
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA