Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Phys Rev E ; 109(2): L022102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491584

RESUMO

Stretched-exponential relaxation is a widely observed phenomenon found in ordered ferromagnets as well as glassy systems. One modeling approach connects this behavior to a droplet dynamics described by an effective Langevin equation for the droplet radius with an r^{2/3} potential. Here, we study a Brownian particle under the influence of a general confining, albeit weak, potential field that grows with distance as a sublinear power law. We find that for this memoryless model, observables display stretched-exponential relaxation. The probability density function of the system is studied using a rate-function ansatz. We obtain analytically the stretched-exponential exponent along with an anomalous power-law scaling of length with time. The rate function exhibits a point of nonanalyticity, indicating a dynamical phase transition. In particular, the rate function is double valued both to the left and right of this point, leading to four different rate functions, depending on the choice of initial conditions and symmetry.

2.
Phys Rev E ; 108(4-1): 044406, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978632

RESUMO

Ultimately, the eventual extinction of any biological population is an inevitable outcome. While extensive research has focused on the average time it takes for a population to go extinct under various circumstances, there has been limited exploration of the distributions of extinction times and the likelihood of significant fluctuations. Recently, Hathcock and Strogatz [D. Hathcock and S. H. Strogatz, Phys. Rev. Lett. 128, 218301 (2022)0031-900710.1103/PhysRevLett.128.218301] identified Gumbel statistics as a universal asymptotic distribution for extinction-prone dynamics in a stable environment. In this study we aim to provide a comprehensive survey of this problem by examining a range of plausible scenarios, including extinction-prone, marginal (neutral), and stable dynamics. We consider the influence of demographic stochasticity, which arises from the inherent randomness of the birth-death process, as well as cases where stochasticity originates from the more pronounced effect of random environmental variations. Our work proposes several generic criteria that can be used for the classification of experimental and empirical systems, thereby enhancing our ability to discern the mechanisms governing extinction dynamics. Employing these criteria can help clarify the underlying mechanisms driving extinction processes.


Assuntos
Meio Ambiente , Modelos Biológicos , Dinâmica Populacional , Processos Estocásticos , Tempo , Genótipo
3.
Phys Rev E ; 108(2-1): 024133, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723721

RESUMO

Particles anomalously diffusing in contact with a thermal bath are initially released from an asymptotically flat potential well. For temperatures that are sufficiently low compared to the potential depth, the dynamical and thermodynamical observables of the system remain almost constant for long times. We show how these stagnated states are characterized as non-normalizable quasiequilibrium (NNQE) states. We use the fractional-time Fokker-Planck equation (FTFPE) and continuous-time random walk approaches to calculate ensemble averages. We obtain analytical estimates of the durations of NNQE states, depending on the fractional order, from approximate theoretical solutions of the FTFPE. We study and compare two types of observables, the mean square displacement typically used to characterize diffusion, and the thermodynamic energy. We show that the typical timescales for transient stagnation depend exponentially on the value of the depth of the potential well, in units of temperature, multiplied by a function of the fractional exponent.

4.
Phys Rev E ; 107(2-1): 024122, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932490

RESUMO

We study the motion of an overdamped particle connected to a thermal heat bath in the presence of an external periodic potential in one dimension. When we coarse-grain, i.e., bin the particle positions using bin sizes that are larger than the periodicity of the potential, the packet of spreading particles, all starting from a common origin, converges to a normal distribution centered at the origin with a mean-squared displacement that grows as 2D^{*}t, with an effective diffusion constant that is smaller than that of a freely diffusing particle. We examine the interplay between this coarse-grained description and the fine structure of the density, which is given by the Boltzmann-Gibbs (BG) factor e^{-V(x)/k_{B}T}, the latter being nonnormalizable. We explain this result and construct a theory of observables using the Fokker-Planck equation. These observables are classified as those that are related to the BG fine structure, like the energy or occupation times, while others, like the positional moments, for long times, converge to those of the large-scale description. Entropy falls into a special category as it has a coarse-grained and a fine structure description. The basic thermodynamic formula F=TS-E is extended to this far-from-equilibrium system. The ergodic properties are also studied using tools from infinite ergodic theory.

5.
Proc Natl Acad Sci U S A ; 120(1): e2216109120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36580597

RESUMO

Regulatory networks as large and complex as those implicated in cell-fate choice are expected to exhibit intricate, very high-dimensional dynamics. Cell-fate choice, however, is a macroscopically simple process. Additionally, regulatory network models are almost always incomplete and/or inexact, and do not incorporate all the regulators and interactions that may be involved in cell-fate regulation. In spite of these issues, regulatory network models have proven to be incredibly effective tools for understanding cell-fate choice across contexts and for making useful predictions. Here, we show that minimal frustration-a feature of biological networks across contexts but not of random networks-can compel simple, low-dimensional steady-state behavior even in large and complex networks. Moreover, the steady-state behavior of minimally frustrated networks can be recapitulated by simpler networks such as those lacking many of the nodes and edges and those that treat multiple regulators as one. The present study provides a theoretical explanation for the success of network models in biology and for the challenges in network inference.


Assuntos
Biologia , Frustração , Diferenciação Celular/fisiologia , Redes Reguladoras de Genes , Algoritmos , Biologia Computacional/métodos
6.
Phys Rev Lett ; 129(10): 108101, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112430

RESUMO

Drug persistence is a phenomenon by which a small percentage of cancer cells survive the presentation of targeted therapy by transitioning to a quiescent state. Eventually some of these persister cells can transition back to an active growing state and give rise to resistant tumors. Here we introduce a quantitative genetics approach to drug-exposed populations of cancer cells in order to interpret recent experimental data regarding inheritance of persister probability. Our results indicate that alternating periods of drug treatment and drug removal may not be an effective strategy for eliminating persisters.


Assuntos
Antibacterianos , Neoplasias , Divisão Celular , Neoplasias/genética
7.
Phys Rev Lett ; 129(9): 094101, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083641

RESUMO

Extreme value (EV) statistics of correlated systems are widely investigated in many fields, spanning the spectrum from weather forecasting to earthquake prediction. Does the unavoidable discrete sampling of a continuous correlated stochastic process change its EV distribution? We explore this question for correlated random variables modeled via Langevin dynamics for a particle in a potential field. For potentials growing at infinity faster than linearly and for long measurement times, we find that the EV distribution of the discretely sampled process diverges from that of the full continuous dataset and converges to that of independent and identically distributed random variables drawn from the process's equilibrium measure. However, for processes with sublinear potentials, the long-time limit is the EV statistics of the continuously sampled data. We treat processes whose equilibrium measures belong to the three EV attractors: Gumbel, Fréchet, and Weibull. Our Letter shows that the EV statistics can be extremely sensitive to the sampling rate of the data.

8.
Phys Biol ; 18(6)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34547743

RESUMO

Many developmental processes in biology utilize notch-delta signaling to construct an ordered pattern of cellular differentiation. This signaling modality is based on nearest-neighbor contact, as opposed to the more familiar mechanism driven by the release of diffusible ligands. Here, exploiting this 'juxtacrine' property, we present an exact treatment of the pattern formation problem via a system of nine coupled ordinary differential equations. The possible patterns that are realized for realistic parameters can be analyzed by considering a co-dimension 2 pitchfork bifurcation of this system. This analysis explains the observed prevalence of hexagonal patterns with high delta at their center, as opposed to those with central high notch levels (referred to as anti-hexagons). We show that outside this range of parameters, in particular for lowcis-coupling, a novel kind of pattern is produced, where high delta cells have high notch as well. It also suggests that the biological system is only weakly first order, so that an additional mechanism is required to generate the observed defect-free patterns. We construct a simple strategy for producing such defect-free patterns.


Assuntos
Padronização Corporal , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Proteínas de Membrana , Transdução de Sinais
9.
Entropy (Basel) ; 23(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498204

RESUMO

We investigate the overdamped Langevin motion for particles in a potential well that is asymptotically flat. When the potential well is deep as compared to the temperature, physical observables, like the mean square displacement, are essentially time-independent over a long time interval, the stagnation epoch. However, the standard Boltzmann-Gibbs (BG) distribution is non-normalizable, given that the usual partition function is divergent. For this regime, we have previously shown that a regularization of BG statistics allows for the prediction of the values of dynamical and thermodynamical observables in the non-normalizable quasi-equilibrium state. In this work, based on the eigenfunction expansion of the time-dependent solution of the associated Fokker-Planck equation with free boundary conditions, we obtain an approximate time-independent solution of the BG form, being valid for times that are long, but still short as compared to the exponentially large escape time. The escaped particles follow a general free-particle statistics, where the solution is an error function, which is shifted due to the initial struggle to overcome the potential well. With the eigenfunction solution of the Fokker-Planck equation in hand, we show the validity of the regularized BG statistics and how it perfectly describes the time-independent regime though the quasi-stationary state is non-normalizable.

10.
Phys Rev Lett ; 125(8): 088101, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909810

RESUMO

Characterization of the differences between biological and random networks can reveal the design principles that enable the robust realization of crucial biological functions including the establishment of different cell types. Previous studies, focusing on identifying topological features that are present in biological networks but not in random networks, have, however, provided few functional insights. We use a Boolean modeling framework and ideas from the spin glass literature to identify functional differences between five real biological networks and random networks with similar topological features. We show that minimal frustration is a fundamental property that allows biological networks to robustly establish cell types and regulate cell fate choice, and that this property can emerge in complex networks via Darwinian evolution. The study also provides clues regarding how the regulation of cell fate choice can go awry in a disease like cancer and lead to the emergence of aberrant cell types.


Assuntos
Fenômenos Fisiológicos Celulares , Modelos Biológicos , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Humanos
11.
Phys Rev E ; 102(6-1): 063107, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466046

RESUMO

We study Saffman-Taylor flow in the presence of intermediate noise numerically by using both a boundary-integral approach as well as the Kadanoff-Liang modified diffusion-limited aggregation model that incorporates surface tension and reduced noise. For little to no noise, both models reproduce the well-known Saffman-Taylor finger. We compare both models in the region of intermediate noise, where we observe occasional tip-splitting events, focusing on the ensemble-average. We show that as the noise in the system is increased, the mean behavior in both models approaches the cos^{2}(πy/W) transverse density profile far behind the leading front. We also investigate how the noise scales and affects both models.

12.
Phys Rev Lett ; 122(1): 010601, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012666

RESUMO

We study a particle immersed in a heat bath, in the presence of an external force which decays at least as rapidly as 1/x, e.g., a particle interacting with a surface through a Lennard-Jones or a logarithmic potential. As time increases, our system approaches a non-normalizable Boltzmann state. We study observables, such as the energy, which are integrable with respect to this asymptotic thermal state, calculating both time and ensemble averages. We derive a useful canonical-like ensemble which is defined out of equilibrium, using a maximum entropy principle, where the constraints are normalization, finite averaged energy, and a mean-squared displacement which increases linearly with time. Our work merges infinite-ergodic theory with Boltzmann-Gibbs statistics, thus extending the scope of the latter while shedding new light on the concept of ergodicity.

13.
Health Aff (Millwood) ; 38(1): 84-86, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615515

RESUMO

Seven former commissioners of the Food and Drug Administration (FDA) from both sides of the political aisle recommend that the FDA be moved out of the Department of Health and Human Services and reconfigured as an independent federal agency. We believe that such a reengineering would promote reliance on consistent science-based regulation and ensure that the American public has access to the best that science and industry can offer.


Assuntos
Pesquisa Biomédica , Tomada de Decisões , United States Dept. of Health and Human Services/organização & administração , United States Food and Drug Administration/organização & administração , Humanos , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência
14.
Phys Rev E ; 98(2-1): 022131, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253529

RESUMO

The demographic (shot) noise in population dynamics scales with the square root of the population size. This process is very important, as it yields an absorbing state at zero field, but simulating it, especially on spatial domains, is a nontrivial task. Here, we analyze two similar methods that were suggested for simulating the corresponding Langevin equation, one by Pechenik and Levine and the other by Dornic, Chaté, and Muñoz (DCM). These methods are based on operator-splitting techniques and the essential difference between them lies in which terms are bundled together in the splitting process. Both these methods are first order in the time step so one may expect that their performance will be similar. We find, surprisingly, that when simulating the stochastic Ginzburg-Landau equation with two deterministic metastable states, the DCM method exhibits two anomalous behaviors. First, the stochastic stall point moves away from its deterministic counterpart, the Maxwell point, when decreasing the noise. Second, the errors induced by the finite time step are larger by a significant factor (i.e., >10×) in the DCM method. We show that both these behaviors are the result of a finite-time-step induced shift in the deterministic Maxwell point in the DCM method, due to the particular operator splitting employed. In light of these results, care must be exercised when computing quantities like phase-transition boundaries (as opposed to universal quantities such as critical exponents) in such stochastic spatial systems.


Assuntos
Simulação por Computador , Dinâmica Populacional , Processos Estocásticos
15.
Phys Rev E ; 97(4-1): 042213, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758694

RESUMO

In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

16.
Phys Rev Lett ; 120(4): 040502, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437409

RESUMO

The first detection of a quantum particle on a graph is shown to depend sensitively on the distance ξ between the detector and initial location of the particle, and on the sampling time τ. Here, we use the recently introduced quantum renewal equation to investigate the statistics of first detection on an infinite line, using a tight-binding lattice Hamiltonian with nearest-neighbor hops. Universal features of the first detection probability are uncovered and simple limiting cases are analyzed. These include the large ξ limit, the small τ limit, and the power law decay with the attempt number of the detection probability over which quantum oscillations are superimposed. For large ξ the first detection probability assumes a scaling form and when the sampling time is equal to the inverse of the energy band width nonanalytical behaviors arise, accompanied by a transition in the statistics. The maximum total detection probability is found to occur for τ close to this transition point. When the initial location of the particle is far from the detection node we find that the total detection probability attains a finite value that is distance independent.

17.
Biol Direct ; 13(1): 24, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30621755

RESUMO

BACKGROUND: The relatively fast selection of symbiotic bacteria within hosts and the potential transmission of these bacteria across generations of hosts raise the question of whether interactions between host and bacteria support emergent adaptive capabilities beyond those of germ-free hosts. RESULTS: To investigate possibilities for emergent adaptations that may distinguish composite host-microbiome systems from germ-free hosts, we introduce a population genetics model of a host-microbiome system with vertical transmission of bacteria. The host and its bacteria are jointly exposed to a toxic agent, creating a toxic stress that can be alleviated by selection of resistant individuals and by secretion of a detoxification agent ("detox"). We show that toxic exposure in one generation of hosts leads to selection of resistant bacteria, which in turn, increases the toxic tolerance of the host's offspring. Prolonged exposure to toxin over many host generations promotes anadditional form of emergent adaptation due to selection of hosts based on detox produced by their bacterial community as a whole (as opposed to properties of individual bacteria). CONCLUSIONS: These findings show that interactions between pure Darwinian selections of host and its bacteria can give rise to emergent adaptive capabilities, including Lamarckian-like adaptation of the host-microbiome system. REVIEWERS: This article was reviewed by Eugene Koonin, Yuri Wolf and Philippe Huneman.


Assuntos
Adaptação Biológica , Bactérias/genética , Interações Hospedeiro-Patógeno , Microbiota , Seleção Genética , Simbiose/genética , Fenômenos Fisiológicos Bacterianos/genética , Modelos Genéticos
18.
Theor Popul Biol ; 119: 57-71, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175607

RESUMO

The dynamics of two competing species in a finite size community is one of the most studied problems in population genetics and community ecology. Stochastic fluctuations lead, inevitably, to the extinction of one of the species, but the relevant timescale depends on the underlying dynamics. The persistence time of the community has been calculated both for neutral models, where the only driving force of the system is drift (demographic stochasticity), and for models with strong selection. Following recent analyses that stress the importance of environmental stochasticity in empirical systems, we present here a general theory of the persistence time of a two-species community where drift, environmental variations and time independent selective advantage are all taken into account.


Assuntos
Deriva Genética , Seleção Genética , Processos Estocásticos , Demografia , Meio Ambiente , Humanos , Dinâmica Populacional
19.
Proc Natl Acad Sci U S A ; 114(38): E7875-E7881, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874554

RESUMO

The advent of cancer immunotherapy has generated renewed hope for the treatment of many malignancies by introducing a number of novel strategies that exploit various properties of the immune system. These therapies are based on the idea that cytotoxic T lymphocytes (CTLs) directly recognize and respond to tumor-associated neoantigens (TANs) in much the same way as they would to foreign peptides presented on cell surfaces. To date, however, nearly all attempts to optimize immunotherapeutic strategies have been empirical. Here, we develop a model of T cell selection based on the assumption of random interaction strengths between a self-peptide and the various T cell receptors. The model enables the analytical study of the effects of selection on the CTL recognition of TANs and completely foreign peptides and can estimate the number of CTLs that can detect donor-matched transplants. We show that negative selection thresholds chosen to reflect experimentally observed thymic survival rates result in near-optimal production of T cells that are capable of surviving selection and recognizing foreign antigen. These analytical results are confirmed by simulation.


Assuntos
Antígenos de Neoplasias/imunologia , Modelos Imunológicos , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Peptídeos/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Humanos , Imunoterapia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/patologia , Timo/patologia
20.
Phys Rev Lett ; 118(26): 260601, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28707920

RESUMO

We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density P_{t}(x) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA