Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Stroke Res ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822994

RESUMO

Timely relief of edema and clearance of waste products, as well as promotion of anti-inflammatory immune responses, reduce ischemic stroke pathology, and attenuate harmful long-term effects post-stroke. The discovery of an extensive and functional lymphatic vessel system in the outermost meningeal layer, dura mater, has opened up new possibilities to facilitate post-stroke recovery by inducing dural lymphatic vessel (dLV) growth via a single injection of a vector encoding vascular endothelial growth factor C (VEGF-C). In the present study, we aimed to improve post-stroke outcomes by inducing dLV growth in mice. We injected mice with a single intracerebroventricular dose of adeno-associated viral particles encoding VEGF-C before subjecting them to transient middle cerebral artery occlusion (tMCAo). Behavioral testing, Gadolinium (Gd) contrast agent-enhanced magnetic resonance imaging (MRI), and immunohistochemical analysis were performed to define the impact of VEGF-C on the post-stroke outcome. VEGF-C improved stroke-induced behavioral deficits, such as gait disturbances and neurological deficits, ameliorated post-stroke inflammation, and enhanced an alternative glial immune response. Importantly, VEGF-C treatment increased the drainage of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF), as shown by Gd-enhanced MRI. These outcomes were closely associated with an increase in the growth of dLVs around the region where we observed increased vefgc mRNA expression within the brain, including the olfactory bulb, cortex, and cerebellum. Strikingly, VEGF-C-treated ischemic mice exhibited a faster and stronger Gd-signal accumulation in ischemic core area and an enhanced fluid outflow via the cribriform plate. In conclusion, the VEGF-C-induced dLV growth improved the overall outcome post-stroke, indicating that VEGF-C has potential to be included in the treatment strategies of post-ischemic stroke. However, to maximize the therapeutic potential of VEGF-C treatment, further studies on the impact of an enhanced dural lymphatic system at clinically relevant time points are essential.

2.
Antioxidants (Basel) ; 11(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35204286

RESUMO

A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.

3.
Sci Rep ; 11(1): 3518, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568697

RESUMO

Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.


Assuntos
Morte Celular/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Morte Celular/fisiologia , Ferroptose/fisiologia , Glutationa/metabolismo , Ferro/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuroproteção/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia
4.
Front Immunol ; 11: 559810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584640

RESUMO

Rationale: The recently discovered meningeal lymphatic vessels (mLVs) have been proposed to be the missing link between the immune and the central nervous system. The role of mLVs in modulating the neuro-immune response following a traumatic brain injury (TBI), however, has not been analyzed. Parenchymal T lymphocyte infiltration has been previously reported as part of secondary events after TBI, suggestive of an adaptive neuro-immune response. The phenotype of these cells has remained mostly uncharacterized. In this study, we identified subpopulations of T cells infiltrating the perilesional areas 30 days post-injury (an early-chronic time point). Furthermore, we analyzed how the lack of mLVs affects the magnitude and the type of T cell response in the brain after TBI. Methods: TBI was induced in K14-VEGFR3-Ig transgenic (TG) mice or in their littermate controls (WT; wild type), applying a controlled cortical impact (CCI). One month after TBI, T cells were isolated from cortical areas ipsilateral or contralateral to the trauma and from the spleen, then characterized by flow cytometry. Lesion size in each animal was evaluated by MRI. Results: In both WT and TG-CCI mice, we found a prominent T cell infiltration in the brain confined to the perilesional cortex and hippocampus. The majority of infiltrating T cells were cytotoxic CD8+ expressing a CD44hiCD69+ phenotype, suggesting that these are effector resident memory T cells. K14-VEGFR3-Ig mice showed a significant reduction of infiltrating CD4+ T lymphocytes, suggesting that mLVs could be involved in establishing a proper neuro-immune response. Extension of the lesion (measured as lesion volume from MRI) did not differ between the genotypes. Finally, TBI did not relate to alterations in peripheral circulating T cells, as assessed one month after injury. Conclusions: Our results are consistent with the hypothesis that mLVs are involved in the neuro-immune response after TBI. We also defined the resident memory CD8+ T cells as one of the main population activated within the brain after a traumatic injury.


Assuntos
Imunidade Adaptativa , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Linfático/metabolismo , Sistema Linfático/fisiopatologia , Neuroimunomodulação , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Memória Imunológica , Imunofenotipagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/deficiência
5.
Front Cell Neurosci ; 13: 461, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708742

RESUMO

Despite its extensive use in clinical studies, the molecular mechanisms underlying the effects of transcranial direct current stimulation (tDCS) remain to be elucidated. We previously described subacute effects of tDCS on immune- and stem cells in the rat brain. To investigate the more immediate effects of tDCS regulating those cellular responses, we treated rats with a single session of either anodal or cathodal tDCS, and analyzed the gene expression by microarray; sham-stimulated rats served as control. Anodal tDCS increased expression of several genes coding for the major histocompatibility complex I (MHC I), while cathodal tDCS increased the expression of the immunoregulatory protein osteopontin (OPN). We confirmed the effects of gene upregulation by immunohistochemistry at the protein level. Thus, our data show a novel mechanism for the actions of tDCS on immune- and inflammatory processes, providing a target for future therapeutic studies.

6.
NMR Biomed ; 28(2): 231-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25521600

RESUMO

Transcranial direct current stimulation (tDCS) is used in numerous clinical studies and considered an effective and versatile add-on therapy in neurorehabilitation. To date, however, the underlying neurobiological mechanisms remain elusive. In a rat model of tDCS, we recently observed a polarity-dependent accumulation of endogenous neural stem cells (NSCs) in the stimulated cortex. Based upon these findings, we hypothesized that tDCS may exert a direct migratory effect on endogenous NSCs towards the stimulated cortex. Using noninvasive imaging, we here investigated whether tDCS may also cause a directed migration of engrafted NSCs. Murine NSCs were labeled with superparamagnetic particles of iron oxide (SPIOs) and implanted into rat striatum and corpus callosum. MRI was performed (i) immediately after implantation and (ii) after 10 tDCS sessions of anodal or cathodal polarity. Sham-stimulated rats served as control. Imaging results were validated ex vivo using immunohistochemistry. Overall migratory activity of NSCs almost doubled after anodal tDCS. However, no directed migration within the electric field (i.e. towards or away from the electrode) could be observed. Rather, an undirected outward migration from the center of the graft was detected. Xenograft transplantation induced a neuroinflammatory response that was significantly enhanced following cathodal tDCS. This inflammatory response did not impact negatively on the survival of implanted NSCs. Data suggest that anodal tDCS increases the undirected migratory activity of implanted NSCs. Since the electric field did not guide implanted NSCs over large distances, previously observed polarity-dependent accumulation of endogenous NSCs in the cortex might have originated from local proliferation. Results enhance our understanding of the neurobiological mechanisms underlying tDCS, and may thereby help to develop a targeted and sustainable application of tDCS in clinical practice.


Assuntos
Encéfalo/metabolismo , Movimento Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Estimulação Transcraniana por Corrente Contínua , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletrodos , Imunidade/efeitos dos fármacos , Imuno-Histoquímica , Ferro/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Ratos Wistar
7.
PLoS One ; 7(8): e43776, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928032

RESUMO

Transcranial direct current stimulation (tDCS) is increasingly being used in human studies as an adjuvant tool to promote recovery of function after stroke. However, its neurobiological effects are still largely unknown. Electric fields are known to influence the migration of various cell types in vitro, but effects in vivo remain to be shown. Hypothesizing that tDCS might elicit the recruitment of cells to the cortex, we here studied the effects of tDCS in the rat brain in vivo. Adult Wistar rats (n = 16) were randomized to either anodal or cathodal stimulation for either 5 or 10 consecutive days (500 µA, 15 min). Bromodeoxyuridine (BrdU) was given systemically to label dividing cells throughout the experiment. Immunohistochemical analyses ex vivo included stainings for activated microglia and endogenous neural stem cells (NSC). Multi-session tDCS with the chosen parameters did not cause a cortical lesion. An innate immune response with early upregulation of Iba1-positive activated microglia occurred after both cathodal and anodal tDCS. The involvement of adaptive immunity as assessed by ICAM1-immunoreactivity was less pronounced. Most interestingly, only cathodal tDCS increased the number of endogenous NSC in the stimulated cortex. After 10 days of cathodal stimulation, proliferating NSC increased by ∼60%, with a significant effect of both polarity and number of tDCS sessions on the recruitment of NSC. We demonstrate a pro-inflammatory effect of both cathodal and anodal tDCS, and a polarity-specific migratory effect on endogenous NSC in vivo. Our data suggest that tDCS in human stroke patients might also elicit NSC activation and modulate neuroinflammation.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Condutividade Elétrica , Terapia por Estimulação Elétrica/métodos , Regeneração , Crânio , Imunidade Adaptativa , Animais , Encéfalo/imunologia , Contagem de Células , Terapia por Estimulação Elétrica/instrumentação , Eletrodos , Inflamação/imunologia , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Microglia/patologia , Células-Tronco Neurais/patologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA