Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(49): 34598-34609, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38024985

RESUMO

The development of recyclable photocatalysts with high activity and stability has piqued the interest of researchers in the field of wastewater treatment. In this study, an ultrasonic probe approach was used to immerse a sequence of heterojunctions formed by metal-organic frameworks (UiO-66) and different amounts of molybdenum disulfide quantum dots (MoS2QDs), resulting in a highly recyclable MoS2QDs@UiO-66 photocatalyst. Multiple advanced techniques, such as XPS, XRD, TEM, XRF, and UV-vis spectrophotometry, were used to characterize and confirm the successful preparation of UIO-66 impregnated with MoS2QDs. The results indicated that the best heterostructure catalyst exhibited superior efficiency in the photocatalytic degradation of methylene blue (MB) in water, achieving approximately 99% removal within 30 minutes under simulated sunlight, while approximately 97% removal under visible light. The outstanding photocatalytic performance is predominantly attributed to the photoinduced separation of carriers in this heterostructure system. This study proposes a unique, simple, and low-cost method for improving the degradation performance of organic contaminants in water.

2.
Nanotechnology ; 31(47): 475602, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32615552

RESUMO

Molybdenum disulfide (MoS2) has recently been considered as an effective material for potential photocatalytic applications; however, its photocatalytic activity was limited due to the low density of active sites. In this work, MoS2 Quantum dots (QDs) were synthesized via the ultrasonication technique to construct heterostructure with SnS2 nanosheets (SnS2@MoS2 QDs) and the prepared materials were tested for photocatalytic applications for Methylene blue (MB). Pristine SnS2 and SnS2@MoS2 QDs nanocomposite were analyzed by XRD, TEM, PL, and Uv-Vis. Both SnS2 and SnS2@MoS2 QDs exhibited a single trigonal phase with the P-3m1 space group. The TEM analysis confirmed the coupling between the pristine SnS2 and SnS2@MoS2 QDs. The results of photocatalytic activity toward MB indicated that SnS2@MoS2 QDs material exhibits much superior photocatalytic performance compared to pristine SnS2. The excellent photodegradation performance of SnS2@MoS2 QDs is due in the main to the formation of heterojunction between SnS2 and MoS2 QDs with narrow bandgap formation, which results in a facile carriers transfer and thus high photocatalytic efficiency. A representative mechanism of the photodegradation for SnS2@MoS2 QDs photocatalyst was proposed. Such an ultrasonic technique is capable of producing small metallic particle size that can be used to construct new heterostructures for water remediation applications.

3.
RSC Adv ; 9(49): 28345-28356, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-35529663

RESUMO

Herein, different phases of MoS2 nanosheets were synthesized, characterized and tested for dye removal from water. The influence of the MoS2 phases as well as the 1T concentration on the adsorption performance of organic dyes MO, RhB and MB was deeply investigated. The results revealed that the 1T-rich MoS2 nanosheets have superior adsorption performance compared to other 2H and 3R phases. The kinetic results of the adsorption process demonstrate that the experimental data followed the pseudo-second order equation. Meanwhile, the adsorption of dyes over the obtained materials was fitted with several isotherm models. The Langmuir model gives the best fitting to the experimental data with maximum a adsorption capacity of 787 mg g-1. The obtained capacity is significantly higher than that of all previous reports for similar MoS2 materials. Computational studies of the 2H and 1T/2H-MoS2 phases showed that the structural defects present at the 1T/2H grain boundaries enhance the binding of hydroxide and carboxyl groups to the MoS2 surface which in turn increase the adsorption properties of the 1T/2H-MoS2 phase.

4.
RSC Adv ; 8(46): 26364-26370, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541940

RESUMO

MoS2 is a very attractive material and has been well studied for potential applications in various areas. However, due to the wide variety of factors affecting the molecular and electronic structure of MoS2, several contradictory reports about the adsorptive and photocatalytic properties of such materials have been published. In most of these reports, the effect of the actual phase of the materials on the properties was neglected. Here, different phases of MoS2 nanosheets (1T/2H, 1T/3R and 2H) have been obtained using the hydrothermal method with different Mo : S molar ratios and different autoclave filling ratios. The obtained materials have been thoroughly characterized using Raman, UV-vis, powder XRD, SEM, TEM and XPS measurements in order to accurately identify the existing phases in each material. A comparative study of the photocatalytic organic dye degradation efficiency under white light irradiation has been conducted using methyl orange to correlate the different activity of each material to the respective phase composition. The results indicate a much higher performance of the 1T/2H phase compared to the 2H and 3R phases. Detailed computational studies of the different phases revealed the emergence of mid-gap states upon introducing 1T sites into the 2H lattice. This leads to the improvement of the photocatalytic activity of 1T/2H compared to the other prepared materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA