Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295672

RESUMO

To meet the need for food products to be safe and fresh, smart food packaging that can monitor and give information about the quality of packaged food has been developed. In this study, pH-sensitive films with sago starch and various anthocyanin concentrations of Brassica oleracea also known as red cabbage anthocyanin (RCA) at 8, 10, 12, and 14% (w/v) were manufactured using the solvent casting process. Investigation of the physicochemical, mechanical, thermal, and morphological characteristics of the films was performed and analysed. The response of these materials against pH changes was evaluated with buffers of different pH. When the films were exposed to a series of pH buffers (pH 3, 5, 9, 11, and 13), the RCA-associated films displayed a spectacular colour response. In addition, the ability of the starch matrix to overcome the leaching and release of anthocyanins was investigated. Higher concentrations of RCA can maintain the colour difference of films after being immersed in a series of buffer solutions ranging from acidic to basic conditions. Other than that, incorporating RCA extracts into the starch formulation increased the thickness whereas the water content, swelling degree, tensile strength, and elongation at break decreased as compared to films without RCA. The immobilisation of anthocyanin into the film was confirmed by the FTIR measurements. The surface patterns of films were heterogeneous and irregular due to the presence of RCA extract aggregates, which increased as the extract concentration enhanced. However, this would not affect the properties of films. An increase in thermal stability was noted for the anthocyanin-containing films at the final stage of degradation in TGA analysis. It is concluded that RCA and sago starch formulation has great potential to be explored for food packaging purposes.

2.
Membranes (Basel) ; 12(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629777

RESUMO

Cellulose is a biopolymer that may be derived from a variety of agricultural wastes such as rice husks, wheat straw, banana, and so on. Cellulose fibril that is reduced in size, often known as nanocellulose (NC), is a bio-based polymer with nanometer-scale widths with a variety of unique properties. The use of NC as a reinforcing material for nanocomposites has become a popular research issue. This research paper focuses on the production of banana pseudostem cellulose nanofiber. Nano-sized fiber was obtained from banana pseudostem through several processes, namely, grinding, sieving, pre-treatment, bleaching, and acid hydrolysis. The product yield was found to be 40.5% and 21.8% for Musa acuminata and Musa balbisiana, respectively, by the weight of the raw fiber. The reduction in weight was due to the removal of hemicellulose and lignin during processing. Transmission electron microscopy (TEM) analysis showed that the average fiber size decreased from 180 µm to 80.3 ± 21.3 nm. Finally, FTIR analysis showed that the fibers experienced chemical changes after the treatment processes.

3.
Mater Sci Eng C Mater Biol Appl ; 110: 110609, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204060

RESUMO

Vaginal drug delivery is regarded as a promising route against women-related health issues such as unwanted pregnancies and sexually transmitted infections. However, only a very few studies have been reported on the use of hydrogel rings with low cytotoxicity for vaginal drug delivery applications. Moreover, the effect of nanoparticles on hydrogel vaginal rings has not been clearly evaluated. To overcome these challenges, we hereby developed nanocomposite hydrogel rings based on polyacrylamide-sodium carboxymethyl cellulose-montmorillonite nanoparticles in the ring-shaped aluminum mold for controlled drug delivery. The hydrogel rings were synthesized by using N,N'-methylene bisacrylamide, N,N,N',N'-tetramethyl ethylene diamine, and ammonium persulfate, as a crosslinker, accelerator, and initiator, respectively. The obtained rings were 5.5 cm in diameters and 0.5 cm in rims. Chemical structures of the nanocomposite rings were confirmed by Fourier transform infrared, and Nuclear Magnetic Resonance spectroscopies. Additionally, the swelling ratio of hydrogels was appeared to be adjusted by the introduction of nanoparticles. In vitro release experiment of methylene blue, as a hydrophilic model drug, revealed that the nanocomposite rings could not only reduce burst effect (almost more than twice), but also achieve prolonged release for 15 days in the vaginal fluid simulant which mimic the vaginal conditions at pH of almost 4.2, and a temperature of 37 °C. Importantly, the resultant hydrogel rings with or without various concentrations of montmorillonite showed low cytotoxicity toward human skin fibroblasts. Furthermore, different antibacterial activities against Escherichia coli were observed for various concentrations of montmorillonite in hydrogels. These results suggest the great potential of montmorillonite-based hydrogel rings for vaginal drug delivery.


Assuntos
Resinas Acrílicas , Antibacterianos , Bentonita , Sistemas de Liberação de Medicamentos , Escherichia coli/crescimento & desenvolvimento , Hidrogéis , Teste de Materiais , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Administração Intravaginal , Antibacterianos/química , Antibacterianos/farmacologia , Bentonita/química , Bentonita/farmacologia , Linhagem Celular , Feminino , Humanos , Hidrogéis/química , Hidrogéis/farmacologia
4.
J Food Sci Technol ; 55(12): 5161-5165, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30483013

RESUMO

Dielectric properties study is important in understanding the interaction between materials within electromagnetic field. By knowing and understanding the dielectric properties of materials, an efficient and effective microwave heating process and products can be designed. In this study, the dielectric properties of several encapsulation wall materials were measured using open-ended coaxial probe method. This method was selected due to its simplicity and high accuracy. All materials exhibited similar behavior. The result inferred that ß-cyclodextrin (BC), starch (S), Arabic (GA) and maltodextrin (M) with various dextrose equivalent exhibited effective encapsulation wall materials in microwave encapsulation-drying technique owing to loss tangent values which were higher than 0.1 at general application frequency of 2.45 GHz. Thus, these were found to be suitable as wall material to encapsulate the selected core material in this microwave encapsulation-drying method. On contrary, sodium caseinate showed an ineffective wall material to be used in microwave encapsulation-drying. The differences in the values of dielectric constant, loss factor and loss tangent were found to be contributed by frequency, composition and bulk density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA