Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Consort Psychiatr ; 4(1): 5-16, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38239571

RESUMO

BACKGROUND: Transcriptomic studies of the brains of schizophrenia (SZ) patients have produced abundant but largely inconsistent findings about the disorders pathophysiology. These inconsistencies might stem not only from the heterogeneous nature of the disorder, but also from the unbalanced focus on particular cortical regions and protein-coding genes. Compared to protein-coding transcripts, long intergenic non-coding RNA (lincRNA) display substantially greater brain region and disease response specificity, positioning them as prospective indicators of SZ-associated alterations. Further, a growing understanding of the systemic character of the disorder calls for a more systematic screening involving multiple diverse brain regions. AIM: We aimed to identify and interpret alterations of the lincRNA expression profiles in SZ by examining the transcriptomes of 35 brain regions. METHODS: We measured the transcriptome of 35 brain regions dissected from eight adult brain specimens, four SZ patients, and four healthy controls, using high-throughput RNA sequencing. Analysis of these data yielded 861 annotated human lincRNAs passing the detection threshold. RESULTS: Of the 861 detected lincRNA, 135 showed significant region-dependent expression alterations in SZ (two-way ANOVA, BH-adjusted p 0.05) and 37 additionally showed significant differential expression between HC and SZ individuals in at least one region (post hoc Tukey test, p 0.05). For these 37 differentially expressed lincRNAs (DELs), 88% of the differences occurred in a cluster of brain regions containing axon-rich brain regions and cerebellum. Functional annotation of the DEL targets further revealed stark enrichment in neurons and synaptic transmission terms and pathways. CONCLUSION: Our study highlights the utility of a systematic brain transcriptome analysis relying on the expression profiles measured across multiple brain regions and singles out white matter regions as a prospective target for further SZ research.

2.
Consort Psychiatr ; 2(3): 35-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-39044755

RESUMO

INTRODUCTION: Schizophrenia, although a debilitating mental illness, greatly affects individuals' physical health as well. One of the leading somatic comorbidities associated with schizophrenia is cardiovascular disease, which has been estimated to be one of the leading causes of excess mortality in patients diagnosed with schizophrenia. Although the shared susceptibility to schizophrenia and cardiovascular disease is well established, the mechanisms linking these two disorders are not well understood. Genetic studies have hinted toward shared lipid metabolism abnormalities co-occurring in the two disorders, while lipid compounds have emerged as prognostic markers for cardiovascular disease. In particular, three ceramide species in the blood plasma, Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1), have been robustly linked to the latter disorder. AIM: We aimed to assess the differences in abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in the blood plasma of schizophrenia patients compared to healthy controls. METHODS: We measured the abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in a cohort of 82 patients with schizophrenia and 138 controls without a psychiatric diagnosis and validated the results using an independent cohort of 26 patients with schizophrenia, 55 control individuals, and 19 patients experiencing a first psychotic episode. RESULTS: We found significant alterations for all three ceramide species Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) and a particularly strong difference in concentrations between psychiatric patients and controls for the ceramide species Cer(d18:1/18:0). CONCLUSIONS: The alteration of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) levels in the blood plasma might be a manifestation of metabolic abnormalities common to both schizophrenia and cardiovascular disease.

3.
Transl Anim Sci ; 4(1): 264-274, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32704985

RESUMO

Genomic selection is routinely used worldwide in agricultural breeding. However, in Russia, it is still not used to its full potential partially due to high genotyping costs. The use of genotypes imputed from the low-density chips (LD-chip) provides a valuable opportunity for reducing the genotyping costs. Pork production in Russia is based on the conventional 3-tier pyramid involving 3 breeds; therefore, the best option would be the development of a single LD-chip that could be used for all of them. Here, we for the first time have analyzed genomic variability in 3 breeds of Russian pigs, namely, Landrace, Duroc, and Large White and generated the LD-chip that can be used in pig breeding with the negligible loss in genotyping quality. We have demonstrated that out of the 3 methods commonly used for LD-chip construction, the block method shows the best results. The imputation quality depends strongly on the presence of close ancestors in the reference population. We have demonstrated that for the animals with both parents genotyped using high-density panels high-quality genotypes (allelic discordance rate < 0.05) could be obtained using a 300 single nucleotide polymorphism (SNP) chip, while in the absence of genotyped ancestors at least 2,000 SNP markers are required. We have shown that imputation quality varies between chromosomes, and it is lower near the chromosome ends and drops with the increase in minor allele frequency. Imputation quality of the individual SNPs correlated well across breeds. Using the same LD-chip, we were able to obtain comparable imputation quality in all 3 breeds, so it may be suggested that a single chip could be used for all of them. Our findings also suggest that the presence of markers with extremely low imputation quality is likely to be explained by wrong mapping of the markers to the chromosomal positions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA