Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Invest ; 42(4): 319-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38695671

RESUMO

Glioblastoma multiforme (GBM), is a frequent class of malignant brain tumors. Epigenetic therapy, especially with synergistic combinations is highly paid attention for aggressive solid tumors like GBM. Here, RSM optimization has been used to increase the efficient arrest of U87 and U251 cell lines due to synergistic effects. Cell lines were treated with SAHA, 5-Azacytidine, GSK-126, and PTC-209 individually and then RSM was used to find most effective combinations. Results showed that optimized combinations significantly reduce cell survival and induce cell cycle arrest and apoptosis in both cell lines. Expression of cyclin B1 and cyclin D1 were decreased while caspase3 increased expression.


Assuntos
Apoptose , Sinergismo Farmacológico , Epigênese Genética , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Azacitidina/farmacologia , Azacitidina/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Vorinostat/farmacologia , Vorinostat/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo
2.
Biofabrication ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697098

RESUMO

Uricase (EC 1.7.3.3) is an oxidoreductase enzyme which is widely exploited for diagnostic and treatment purposes in medicine. This study has been focused on producing recombinant uricase from E. coli BL21 in a bubble column bioreactor (BCB) and finding the optimal conditions for maximum uricase activity. The three most effective variables on uricase activity were selected through Plackett-Burman design from 8 different variables and were further optimized by central composite design of RSM. The selected variables included the inoculum size (%v/v), IPTG (Isopropyl ß-d-1-thiogalactopyranoside) concentration (mM) and the initial pH of culture medium. The activity of uricase, final OD600 (Optical Density at 600nm wave-length) and final pH were considered as the responses of this optimization and were modeled. As a result, the activity of 5.84 U.ml-1 and final OD600 of 3.42 were obtained at optimum conditions of 3 %v/v of inoculum size, IPTG concentration of 0.54 mM and pH=6.0. By purifying the obtained enzyme using a Ni-NTA agarose affinity chromatography column, 165±1.5 mg uricase was obtained from a 600 mL cell culture. The results of this study show that bubble column bioreactors can be a highly effective option for large scale uricase production.

3.
Biol Trace Elem Res ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607527

RESUMO

The occurrence of antibiotic resistance on common bacterial agents and the need to use new generations of antibiotics have led to the use of various strategies for production. Taking inspiration from nature, using bio-imitation patterns, in addition to the low cost of production, is advantageous and highly accurate. In this research, we were able to control the temperature, shake, and synthesis time of the synthesis conditions of Bacillus megaterium bacteria as a model for the synthesis of magnetic iron nanoparticles and optimize the ratio of reducing salt to bacterial regenerating agents as well as the concentration of salt to create iron oxide nanoparticles with more favorable properties and produced with more antibacterial properties. Bacterial growth was investigated by changing the incubation times of pre-culture and overnight culture in the range of the logarithmic phase. The synthesis time, salt ratio, and concentration were optimized to achieve the size, charge, colloidal stability, and magnetic and antibacterial properties of nanoparticles. The amount of the effective substance produced by the bacteria was selected by measuring the amount of the active substance synthesized using the free radical reduction (DPPH) method. With the help of DPPH, the duration of the synthesis was determined to be one week. Characterizations such as UV-vis spectroscopy, FTIR, FESEM, X-ray, and scattering optical dynamics were performed and showed that the nanoparticles synthesized with a salt concentration of 80 mM and a bacterial suspension to salt ratio of 2:1 are smaller in size and have a light scattering index, a PDI index close to 0.1, and a greater amount of reducing salt used in the reaction during one week compared to other samples. Moreover, they had more antibacterial properties than the concentration of 100 mM. As a result, better characteristics and more antibacterial properties than common antibiotics were created on E. coli and Bacillus cereus.

4.
J Mech Behav Biomed Mater ; 151: 106396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237204

RESUMO

This study investigates the performance of personalised middle ear prostheses under static pressure through a combined approach of numerical analysis and experimental validation. The sound transmission performances of both normal and reconstructed middle ears undergo changes under high positive or negative pressure within the middle ear cavity. This pressure fluctuation has the potential to result in prosthesis displacement/extrusion in patients. To optimise the design of middle ear prostheses, it is crucial to consider various factors, including the condition of the middle ear cavity in which the prosthesis is placed. The integration of computational modelling techniques with non-invasive imaging modalities has demonstrated significant promise and distinct prospects in middle ear surgery. In this study, we assessed the efficacy of Finite Element (FE) analysis in modelling the responses of both normal and reconstructed middle ears to elevated static pressure within the ear canal. The FE model underwent validation using experimental data derived from human cadaveric temporal bones before progressing to subsequent investigations. Afterwards, we assessed stapes and umbo displacements in the reconstructed middle ear under static pressure, with either a columella-type prosthesis or a prosthetic incus, closely resembling a healthy incus. Results indicated the superior performance of the prosthetic incus in terms of both sound transmission to the inner ear and stress distribution patterns on the TM, potentially lowering the risk of prosthesis displacement/extrusion. This study underscores the potential of computational analysis in middle ear surgery, encompassing aspects such as prosthesis design, predicting outcomes in ossicular chain reconstruction (OCR), and mitigating experimental costs.


Assuntos
Orelha Média , Prótese Ossicular , Humanos , Orelha Média/cirurgia , Estribo , Bigorna/cirurgia , Desenho de Prótese
5.
Int J Biol Macromol ; 254(Pt 3): 127871, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952804

RESUMO

Our study aimed to investigate the effects of ultrasound on the fibrillation kinetics of HEWL (hen egg white lysozyme) and its physicochemical properties. Ultrasound, a mechanical wave, can induce conformational changes in proteins. To achieve this, we developed an ultrasound exposure system and used various biophysical techniques, including ThT fluorescence spectroscopy, ATR-FTIR, Far-UV CD spectrophotometry, Fluorescence microscopy, UV-spectroscopy, and seeding experiments. Our results revealed that higher frequencies significantly accelerated the fibrillation of lysozyme by unfolding the native protein and promoting the fibrillation process, thereby reducing the lag time. We observed a change in the secondary structure of the sonicated protein change to the ß-structure, but there was no difference in the Tm of native and sonicated proteins. Furthermore, we found that higher ultrasound frequencies had a greater seeding effect. We propose that the effect of frequency can be explained by the impact of the Reynolds number, and for the Megahertz frequency range, we are almost at the transition regime of turbulence. Our results suggest that laminar flows may not induce any significant change in the fibrillation kinetics, while turbulent flows may affect the process.


Assuntos
Clara de Ovo , Muramidase , Animais , Muramidase/química , Clara de Ovo/química , Ultrassom , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Amiloide/química , Galinhas/metabolismo , Cinética
6.
Brain Res ; 1822: 148620, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37848119

RESUMO

Epilepsy is a neurological disorder that remains difficult to treat due to the lack of a clear molecular mechanism and incomplete understanding of involved proteins. To identify potential therapeutic targets, it is important to gain insight into changes in protein expression patterns related to epileptogenesis. One promising approach is to analyze proteomic data, which can provide valuable information about these changes. In this study, to evaluate the changes in gene expression during epileptogenesis, LC-MC2 analysis was carried out on hippocampus during stages of electrical kindling in rat models. Subsequently, progressive changes in the expression of proteins were detected as a result of epileptogenesis development. In line with behavioral kindled seizure stages and according to the proteomics data, we described epileptogenesis phases by comparing Stage3 versus Control (S3/C0), Stage5 versus Stage3 (S5/S3), and Stage5 versus Control group (S5/C0). Gene ontology analysis on differentially expressed proteins (DEPs) showed significant changes of proteins involved in immune responses like Csf1R, Aif1 and Stat1 during S3/C0, regulation of synaptic plasticity like Bdnf, Rac1, CaMK, Cdc42 and P38 during S5/S3, and nervous system development throughout S5/C0 like Bdnd, Kcc2 and Slc1a3.There were also proteins like Cox2, which were altered commonly among all three phases. The pathway enrichment analysis of DEPs was also done to discover molecular connections between phases and we have found that the targets like Csf1R, Bdnf and Cox2 were analyzed throughout all three phases were highly involved in the PPI network analysis as hub nodes. Additionally, these same targets underwent changes which were confirmed through Western blotting. Our results have identified proteomic patterns that could shed light on the molecular mechanisms underlying epileptogenesis which may allow for novel targeted therapeutic strategies.


Assuntos
Excitação Neurológica , Proteômica , Ratos , Animais , Proteômica/métodos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Excitação Neurológica/metabolismo , Hipocampo/metabolismo
7.
Brain Commun ; 5(6): fcad325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107502

RESUMO

In multiple sclerosis, lesions are formed in various areas of the CNS, which are characterized by reactive gliosis, immune cell infiltration, extracellular matrix changes and demyelination. CAQK peptide (peptide sequence: cysteine-alanine-glutamine-lysine) was previously introduced as a targeting peptide for the injured site of the brain. In the present study, we aimed to develop a multifunctional system using nanoparticles coated by CAQK peptide, to target the demyelinated lesions in animal model of multiple sclerosis. We investigated the binding of fluorescein amidite-labelled CAQK and fluorescein amidite-labelled CGGK (as control) on mouse brain sections. Then, the porous silicon nanoparticles were synthesized and coupled with fluorescein amidite-labelled CAQK. Five days after lysolecithin-induced demyelination, male mice were intravenously injected with methylprednisolone-loaded porous silicon nanoparticles conjugated to CAQK or the same amount of free methylprednisolone. Our results showed that fluorescein amidite-labelled CAQK recognizes demyelinated lesions in brain sections of animal brains injected with lysolecithin. In addition, intravenous application of methylprednisolone-loaded nanoparticle porous silicon conjugated to CAQK at a single dose of 0.24 mg reduced the levels of microglial activation and astrocyte reactivation in the lesions of mouse corpus callosum after 24 and 48 h. No significant effect was observed following the injection of the same dose of free methylprednisolone. CAQK seems a potential targeting peptide for delivering drugs or other biologically active chemicals/reagents to the CNS of patients with multiple sclerosis. Low-dose methylprednisolone in this targeted drug delivery system showed significant beneficial effect.

8.
Fish Physiol Biochem ; 49(6): 1409-1419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943346

RESUMO

Approximately 80% of luminous organisms live in the oceans, and considerable diversity of life dependence on bioluminescence has been observed in marine organisms. Among vertebrates, luminous fish species are the only group of vertebrates that have the ability to emit bioluminescent light. Meanwhile, the lantern fish family (Myctophidae), with 33 genera all of which have the ability to emit light, is considered the most prominent family among the luminous fish of the deep oceans and seas. Lantern fish Benthosema pterotum has bioluminescence properties due to the presence of photophores scattered in its ventral-lateral region. However, no research has been performed on its bioluminescence system and light emission mechanism. The present research aimed to assess the type of bioluminescence, pigment, photoprotein, or luciferin-luciferase system in B. pterotum. In order to determine the type of light-emitting system in B. pterotum species, several specific experiments were designed and performed. It was shown that the light emission system in B. pterotum species is categorized into the luciferin-luciferase type. Conducting this research was not only innovative, but it also could be the beginning of further research in the field of marine biochemistry and production of the recombinant active forms of enzymes for industrial, commercial, medical, and pharmaceutical purposes.


Assuntos
Peixes , Luciferinas , Animais , Luciferases/genética , Medições Luminescentes
9.
Iran Biomed J ; 27(5): 294-306, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873683

RESUMO

Background: Adenoid cystic carcinoma is a slow-growing malignancy that most often occurs in the salivary glands. Currently, no FDA-approved therapeutic target or diagnostic biomarker has been identified for this cancer. The aim of this study was to find new therapeutic and diagnostic targets using bioinformatics methods. Methods: We extracted the gene expression information from two GEO datasets (including GSE59701 and GSE88804). Different expression genes between adenoid cystic carcinoma (ACC) and normal samples were extracted using R software. The biochemical pathways involved in ACC were obtained by using the Enrichr database. PPI network was drawn by STRING, and important genes were extracted by Cytoscape. Real-time PCR and immunohistochemistry were used for biomarker verification. Results: After analyzing the PPI network, 20 hub genes were introduced to have potential as diagnostic and therapeutic targets. Among these genes, PLCG1 was presented as new biomarker in ACC. Furthermore, by studying the function of the hub genes in the enriched biochemical pathways, we found that insulin-like growth factor type 1 receptor and PPARG pathways most likely play a critical role in tumorigenesis and drug resistance in ACC and have a high potential for selection as therapeutic targets in future studies. Conclusion: In this study, we achieved the recognition of the pathways involving in ACC pathogenesis and also found potential targets for treatment and diagnosis of ACC. Further experimental studies are required to confirm the results of this study.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Humanos , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Neoplasias das Glândulas Salivares/tratamento farmacológico , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/metabolismo , Biomarcadores
10.
Sci Rep ; 13(1): 18220, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880390

RESUMO

Spinal cord injury healing has been shown to be aided by chondroitinase ABC I (cABCI) treatment. The transport of cABCI to target tissues is complicated by the enzyme's thermal instability; however, cABCI may be immobilized on nanosheets to boost stability and improve delivery efficiency. This investigation's goal was to assess the immobilization of cABC I on graphene oxide (GO). for this purpose, GO was produced from graphene using a modified version of Hummer's process. the immobilization of cABC I on GO was examined using SEM, XRD, and FTIR. The enzymatic activity of cABC I was evaluated in relation to substrate concentration. The enzyme was then surface-adsorption immobilized on GO, and its thermal stability was examined. As compared to the free enzyme, the results showed that the immobilized enzyme had a greater Km and a lower Vmax value. The stability of the enzyme was greatly improved by immobilization at 20, 4, 25, and 37 °C. For example, at 37 °C, the free enzyme retained 5% of its activity after 100 min, while the immobilized one retained 30% of its initial activity. The results showed, As a suitable surface for immobilizing cABC I, GO nano sheets boost the enzyme's stability, improving its capability to support axonal regeneration after CNC damage and guard against fast degradation.


Assuntos
Condroitina Sulfatases , Grafite , Traumatismos da Medula Espinal , Humanos , Estabilidade Enzimática , Condroitinases e Condroitina Liases/metabolismo , Enzimas Imobilizadas/metabolismo , Condroitina Sulfatases/metabolismo , Hialuronoglucosaminidase/metabolismo , Traumatismos da Medula Espinal/terapia , Concentração de Íons de Hidrogênio , Temperatura , Cinética
11.
Environ Res ; 238(Pt 1): 116972, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648189

RESUMO

Meniere's disease (MD) is a severe inner ear condition known by debilitating symptoms, including spontaneous vertigo, fluctuating and progressive hearing loss, tinnitus, and aural fullness or pressure within the affected ear. Prosper Meniere first described the origins of MD in the 1860s, but its underlying mechanisms remain largely elusive today. Nevertheless, researchers have identified a key histopathological feature called Endolymphatic Hydrops (ELH), which refers to the excessive buildup of endolymph fluid in the membranous labyrinth of the inner ear. The exact root of ELH is not fully understood. Still, it is believed to involve several biological and bioenvironmental etiological factors such as genetics, autoimmunity, infection, trauma, allergy, and new theories, such as saccular otoconia blocking the endolymphatic duct and sac. Regarding treatment, there are no reliable and definitive cures for MD. Most therapies focus on managing symptoms and improving the overall quality of patients' life. To make significant advancements in addressing MD, it is crucial to gain a fundamental understanding of the disease process, laying the groundwork for more effective therapeutic approaches. This paper provides a comprehensive review of the pathophysiology of MD with a focus on old and recent theories. Current treatment strategies and future translational approaches (with low-level evidence but promising results) related to MD are also discussed, including patents, drug delivery, and nanotechnology, that may provide future benefits to patients suffering from MD.


Assuntos
Hidropisia Endolinfática , Doença de Meniere , Humanos , Doença de Meniere/diagnóstico , Doença de Meniere/terapia , Hidropisia Endolinfática/diagnóstico , Hidropisia Endolinfática/etiologia , Membrana dos Otólitos
12.
Nanomedicine ; 47: 102609, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36228994

RESUMO

Drug development for multiple sclerosis (MS) clinical management focuses on both neuroprotection and repair strategies, and is challenging due to low permeability of the blood-brain barrier, off-target distribution, and the need for high doses of drugs. The changes in the extracellular matrix have been documented in MS patients. It has been shown that the expression of nidogen-1 increases in MS lesions. Laminin forms a stable complex with nidogen-1 through a heptapeptide which was selected to target the lesion area in this study. Here we showed that the peptide binding was specific to the injured area following lysophosphatidylcholine (LPC) induced demyelination. In vivo data showed enhanced delivery of the peptide-functionalized gold nanoparticles (Pep-GNPs) to the lesion area. In addition, Pep-GNPs administration significantly enhanced myelin content and reduced astrocyte/microglia activation. Results demonstrated the possibility of using this peptide to target and treat lesions in patients suffering from MS.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Bainha de Mielina , Peptídeos/farmacologia
13.
Sci Rep ; 12(1): 19630, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385152

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease, which leads to focal demyelination in the brain and spinal cord. Studies showed that iron released during the course of myelin breakdown exacerbates tissue damage, which is in agreement with the features of iron-dependent cell death, ferroptosis. Here, we aimed to investigate the possible contribution of ferroptosis in the demyelinated optic nerve, and to explore the effectiveness of ferroptosis inhibitor, deferiprone (DFP), on the extent of demyelination, inflammation and axonal damage. For this purpose, focal demyelination was induced by injection of lysolecithin (LPC), into the optic nerve of male C57BL/6J mice. Afterward, optic nerves were harvested at different time points from as early as 6 h up to 7 days post-LPC injection. Next, to evaluate the effectiveness of DFP two groups of animals received daily intraperitoneal injection of DFP for 3 or 7 continuous days. Vehicle groups received saline. Iron deposition was observed at different time points post-LPC injection from 6 h to 7 days post injection. Examining ferroptosis markers showed a significant reduction in glutathione content along with increased level of malondialdehyde and upregulated ferroptosis marker genes at early time points after injection. Besides, DFP treatment during the inflammatory phase of the model resulted in decreased microgliosis and inflammation. Reduced demyelination, microgliosis and astrogliosis was shown in mice that received DFP for 7 days. Moreover, DFP protected against axonal damage and retinal ganglion cells loss. Our results suggest the possible contribution of ferroptosis pathway in the process of demyelination. The therapeutic strategies targeting iron deposition, e.g. DFP treatment might thus represent a promising therapeutic target for patients with MS.


Assuntos
Ferroptose , Esclerose Múltipla , Animais , Masculino , Camundongos , Deferiprona/farmacologia , Inflamação , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Neuroproteção , Nervo Óptico/metabolismo
14.
Prog Biophys Mol Biol ; 175: 49-62, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108780

RESUMO

Insulin and its homologous are the most utilized protein drugs due to their role in diabetic patients' treatment. Insulin forms amyloid-like fibrils in vivo at the injection site. Therefore, the study of its fibrillation mechanism and designing efficient inhibitors have high importance in the pharmaceutical industry. Insulin fibrils are formed at both acidic and neutral pH in vitro. Overall, this process involves the dissociation of hexameric form to monomeric, partially dissociating the native monomeric form, nuclei formation, and finally converting oligomers to large ordered aggregates. Intermediate and terminal species are different pathologically. This review is focused on the research works dedicated to the inhibition of insulin fibril formation. The inhibitors include various polyphenols, natural compounds, nanoparticles, and synthetic chemicals/peptides, as well as the classification of inhibitors targets concerning protein fibrillation. Although most inhibitors stabilize the native structure of the protein and prevent the formation of partially folded species, there are other inhibitors that hinder other steps in the course of fibrillation. Also, several inhibitors were able to dissociate the pre-existing fibrils. Finding inhibition strategies could be beneficial for developing new inhibitors that are more efficient and can block the amyloid pathway in a specific desired stage.


Assuntos
Amiloide , Insulina , Humanos , Insulina/química , Insulina/metabolismo , Cinética , Amiloide/química , Concentração de Íons de Hidrogênio
15.
BMC Cancer ; 22(1): 979, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100939

RESUMO

BACKGROUND: Colorectal cancer is one of the most common cancer and the third leading cause of death worldwide. Increased generation of reactive oxygen species (ROS) is observed in many types of cancer cells. Several studies have reported that an increase in ROS production could affect the expression of proteins involved in ROS-scavenging, detoxification and drug resistance. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a known transcription factor for cellular response to oxidative stress. Several researches exhibited that Nrf2 could exert multiple functions and expected to be a promising therapeutic target in many cancers. Here, Nrf2 was knocked down in colorectal cancer cell line HT29 and changes that occurred in signaling pathways and survival mechanisms were evaluated. METHODS: The influence of chemotherapy drugs (doxorubicin and cisplatin), metastasis and cell viability were investigated. To explore the association between specific pathways and viability in HT29-Nrf2-, proteomic analysis, realtime PCR and western blotting were performed. RESULTS: In the absence of Nrf2 (Nrf2-), ROS scavenging and detoxification potential were dramatically faded and the HT29-Nrf2- cells became more susceptible to drugs. However, a severe decrease in viability was not observed. Bioinformatic analysis of proteomic data revealed that in Nrf2- cells, proteins involved in detoxification processes, respiratory electron transport chain and mitochondrial-related compartment were down regulated. Furthermore, proteins related to MAPKs, JNK and FOXO pathways were up regulated that possibly helped to overcome the detrimental effect of excessive ROS production. CONCLUSIONS: Our results revealed MAPKs, JNK and FOXO pathways connections in reducing the deleterious effect of Nrf2 deficiency, which can be considered in cancer therapy.


Assuntos
Neoplasias Colorretais , Proteômica , Linhagem Celular , Neoplasias Colorretais/genética , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
16.
Mar Biotechnol (NY) ; 24(3): 599-613, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35507234

RESUMO

The present study focused on the cloning, expression, and characterization of L-asparaginase of marine Pseudomonas aeruginosa HR03 isolated from fish intestine. Thus, a gene fragment containing the L-asparaginase sequence of Pseudomonas aeruginosa HR03 isolated from the fish intestine was cloned in the pET21a vector and then expressed in Escherichia coli BL21 (DE3) cells. Thereafter, the recombinant L-asparaginase (HR03Asnase) was purified by nickel affinity chromatography, and the enzymatic properties of HR03Asnase, including the effects of pH and temperature on HR03Asnase activity and its kinetic parameters, were determined. The recombinant enzyme HR03Asnase showed the highest similarity to type I L-asparaginase from Pseudomonas aeruginosa. The three-dimensional (3D) modeling results indicate that HR03Asnase exists as a homotetramer. Its molecular weight was 35 kDa, and the maximum activity of the purified enzyme was observed at pH8 and at 40 °C. The km and Vmax of the enzyme obtained with L-asparagine as substrate were 10.904 mM and 3.44 × 10-2 mM/min, respectively. The maximum activity of HR03Asnase was reduced by 50% at 90 °C after 10-min incubation; however, the enzyme maintained more than 20% of its activity after 30-min incubation. This enzyme also maintained almost 50% of its activity at pH 12 after 40-min incubation. The evaluation of pH and temperature stability of HR03Asnase showed that the enzyme has a wide range of activity, which is a suitable characteristic for its application in different industries. Overall, the results of the present study indicate that marine sources are promising biological reservoirs for enzymes to be used for biotechnological purposes, and marine thermostable HR03Asnase is likely a potential candidate for its future usage in the pharmaceutical and food industries.


Assuntos
Asparaginase , Pseudomonas aeruginosa , Animais , Asparaginase/química , Asparaginase/genética , Asparaginase/metabolismo , Asparagina/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/metabolismo
17.
Biosensors (Basel) ; 12(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049665

RESUMO

One of the advantages of surface plasmon resonance is its sensitivity and real-time analyses performed by this method. These characteristics allow us to further investigate the interactions of challenging proteins like Rap1-interacting factor 1 (Rif1). Rif1 is a crucial protein responsible for regulating different cellular processes including DNA replication, repair, and transcription. Mammalian Rif1 is yet to be fully characterized, partly because it is predicted to be intrinsically disordered for a large portion of its polypeptide. This protein has recently been the target of research as a potential biomarker in many cancers. Therefore, finding its most potent interacting partner is of utmost importance. Previous studies showed Rif1's affinity towards structured DNAs and amongst them, T6G24 was superior. Recent studies have shown mouse Rif1 (muRif1) C-terminal domain's (CTD) role in binding to G-quadruplexes (G4). There were many concerns in investigating the Rif1 and G4 interaction, which can be minimized using SPR. Therefore, for the first time, we have assessed its binding with G4 at nano-molar concentrations with SPR which seems to be crucial for its binding analyses. Our results indicate that muRif1-CTD has a high affinity for this G4 sequence as it shows a very low KD (6 ± 1 nM).


Assuntos
Quadruplex G , Proteínas de Ligação a Telômeros , Animais , Replicação do DNA/fisiologia , Camundongos , Ligação Proteica , Ressonância de Plasmônio de Superfície , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
18.
Mol Divers ; 26(1): 97-112, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387185

RESUMO

Synthesizing new chemical compounds and studying their biological applications have been important issues in scientific research. In this investigation, we synthesized and characterized ten new N-acetyl phosphoramidate compounds and explored the crystal structure of three others. Furthermore, not only were some kinetic inhibition parameters measured, like IC50, Ki, kp, KD for 7 compounds on human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), but also their hydrophobic parameter was determined by shake-flask technique. All compounds (number 1-10) were investigated for anti-bacterial activity against three Gram-positive and three Gram-negative bacteria, while chloramphenicol was used as a standard antibiotic. In order to find new insecticide, toxicities of 13 acephate (Ace)-derived compounds (number 20-32) were bioassayed on third larval instar of elm leaf beetle and Xanthogaleruca luteola. Additionally, screening in vivo tests revealed that two compounds had had the greatest insecticidal potential in comparison with others. It means these ones inhibited AChE (with mixed mechanisms) and general esterase more than the rest. According to ChE-QSAR models, the inhibitory potency for enzyme and bacteria is directly influenced by the electronic parameters versus structural descriptors. AChE-QSPR model of fluorescence assay indicated that the inhibitory power of AChE is primarily influenced by a set of electronic factors with the priority of: EHB > PL > δ(31P) versus structural descriptor (SA and Mv). Synthesizing new chemical compounds and studying their biological applications have been important issues in scientific research. Toxicities of 13 acephate (Ace)-derived compounds (number 20-32) were bioassayed on third larval instar of elm leaf beetle and Xanthogaleruca luteola. Insect-QSAR equations of these compounds, based on MLR and PCA, showed that non-descriptor net charge nitrogen atom (which was affected by the polarization of N-H group) had the greatest effect on insecticidal potential.


Assuntos
Acetilcolinesterase , Inseticidas , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Humanos , Inseticidas/química , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
19.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34443736

RESUMO

Nanoparticles (NPs) functionalized with antibodies (Abs) on their surface are used in a wide range of bioapplications. Whereas the attachment of antibodies to single NPs to trigger the internalization in cells via receptor-mediated endocytosis has been widely studied, the conjugation of antibodies to larger NP assemblies has been much less explored. Taking into account that NP assemblies may be advantageous for some specific applications, the possibility of incorporating targeting ligands is quite important. Herein, we performed the effective conjugation of antibodies onto a fluorescent NP assembly, which consisted of fluorinated Quantum Dots (QD) self-assembled through fluorine-fluorine hydrophobic interactions. Cellular uptake studies by confocal microscopy and flow cytometry revealed that the NP assembly underwent the same uptake procedure as individual NPs; that is, the antibodies retained their targeting ability once attached to the nanoassembly, and the NP assembly preserved its intrinsic properties (i.e., fluorescence in the case of QD nanoassembly).

20.
Colloids Surf B Biointerfaces ; 206: 111942, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34243033

RESUMO

Horseradish peroxidase (HRP) is usually used as a label enzyme in immunoassay so the method used for HRP detection in enzyme immunoassay (EIA) plays a key role in sensitivity and precision. The catalytic activity of HRP does not strictly follow classic Michaelis-Menten kinetics, probably due to the inactivation of the enzyme at high concentrations of H2O2. In this paper, a highly sensitive alternative procedure for the HRP assay using H2O2-sensitive CdTe quantum dots as a chemiluminescence (CL) system is reported. This method can measure a much more accurate and reliable value of Km (187 mM H2O2) in comparison with the standard detection method. This system also was applied to thyroid hormone (T4) detection using HRP-based immunoassay. The QD/H2O2 system exhibits a higher linear range of 0.2-16 µg/dL with the improved LOD value of 0.06 µg/dL and selective response to T4, which was better than the commercial colorimetric immunoassay. Meanwhile, the proposed method has been successfully applied to the clinical determination of T4 in the serum samples, and the results confirmed an excellent correlation with the conventional ELISA method (R2 = 0.9832), indicating the potential applications of the method for clinical diagnosis as well.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Peroxidase do Rábano Silvestre , Peróxido de Hidrogênio , Imunoensaio , Luminescência , Medições Luminescentes , Telúrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA