Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Transl Sci ; 15(4): 954-966, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997701

RESUMO

Odronextamab is a fully-human IgG4-based CD20xCD3 bispecific antibody that binds to CD3 on T cells and CD20 on B cells, triggering T-cell-mediated cytotoxicity independent of T-cell-receptor recognition. Adequate safety, tolerability, and encouraging durable complete responses have been observed in an ongoing first-in-human (FIH) study of odronextamab in patients with relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma (B-NHL; NCT02290951). We retrospectively evaluated the pharmacokinetic, pharmacodynamic, and antitumor characteristics of odronextamab in a series of in vitro/in vivo preclinical experiments, to assess their translational value to inform dose escalation for the FIH study. Half-maximal effective concentration values from in vitro cytokine release assays (range: 0.05-0.08 mg/L) provided a reasonable estimate of odronextamab concentrations in patients associated with cytokine release at a 0.5 mg dose (maximum serum concentration: 0.081 mg/L) on week 1/day 1, which could therefore be used to determine the week 1 clinical dose. Odronextamab concentrations resulting in 100% inhibition of tumor growth in a Raji xenograft tumor mouse model (1-10 mg/L) were useful to predict efficacious concentrations in patients and inform dose-escalation strategy. Although predicted human pharmacokinetic parameters derived from monkey data overestimated projected odronextamab exposure, they provided a conservative estimate for FIH starting doses. With step-up dosing, the highest-tested weekly odronextamab dose in patients (320 mg) exceeded the 1 mg/kg single dose in monkeys without step-up dosing. In conclusion, combination of odronextamab in vitro cytokine data, efficacious concentration data from mouse tumor models, and pharmacokinetic evaluations in monkeys has translational value to inform odronextamab FIH study design in patients with R/R B-NHL.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Linfoma de Células B , Animais , Antígenos CD20 , Antineoplásicos/uso terapêutico , Citocinas , Humanos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Camundongos , Estudos Retrospectivos
2.
CPT Pharmacometrics Syst Pharmacol ; 10(11): 1332-1342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327869

RESUMO

A model to quantitatively characterize the effect of evinacumab, an investigational monoclonal antibody against angiopoietin-like protein 3 (ANGPTL3) on lipid trafficking is needed. A quantitative systems pharmacology (QSP) approach was developed to predict the transient responses of different triglyceride (TG)-rich lipoprotein particles in response to evinacumab administration. A previously published hepatic lipid model was modified to address specific queries relevant to the mechanism of evinacumab and its effect on lipid metabolism. Modifications included the addition of intermediate-density lipoprotein and low-density lipoprotein compartments to address the modulation of lipoprotein lipase (LPL) activity by evinacumab, ANGPTL3 biosynthesis and clearance, and a target-mediated drug disposition model. A sensitivity analysis guided the creation of virtual patients (VPs). The drug-free QSP model was found to agree well with clinical data published with the initial hepatic liver model over simulations ranging from 20 to 365 days in duration. The QSP model, including the interaction between LPL and ANGPTL3, was validated against clinical data for total evinacumab, total ANGPTL3, and TG concentrations as well as inhibition of apolipoprotein CIII. Free ANGPTL3 concentration and LPL activity were also modeled. In total, seven VPs were created; the lipid levels of the VPs were found to match the range of responses observed in evinacumab clinical trial data. The QSP model results agreed with clinical data for various subjects and was shown to characterize known TG physiology and drug effects in a range of patient populations with varying levels of TGs, enabling hypothesis testing of evinacumab effects on lipid metabolism.


Assuntos
Anticorpos Monoclonais , Farmacologia em Rede , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Anticorpos Monoclonais/farmacologia , Humanos , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA