Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0286259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252922

RESUMO

BACKGROUND: Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS: A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS: We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS: Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Águas Residuárias , Saúde Pública , Pandemias , Vigilância Epidemiológica Baseada em Águas Residuárias , Inglaterra/epidemiologia , RNA Viral
2.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37074153

RESUMO

Wastewater-based epidemiology has been used extensively throughout the COVID-19 (coronavirus disease 19) pandemic to detect and monitor the spread and prevalence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and its variants. It has proven an excellent, complementary tool to clinical sequencing, supporting the insights gained and helping to make informed public-health decisions. Consequently, many groups globally have developed bioinformatics pipelines to analyse sequencing data from wastewater. Accurate calling of mutations is critical in this process and in the assignment of circulating variants; yet, to date, the performance of variant-calling algorithms in wastewater samples has not been investigated. To address this, we compared the performance of six variant callers (VarScan, iVar, GATK, FreeBayes, LoFreq and BCFtools), used widely in bioinformatics pipelines, on 19 synthetic samples with known ratios of three different SARS-CoV-2 variants of concern (VOCs) (Alpha, Beta and Delta), as well as 13 wastewater samples collected in London between the 15th and 18th December 2021. We used the fundamental parameters of recall (sensitivity) and precision (specificity) to confirm the presence of mutational profiles defining specific variants across the six variant callers. Our results show that BCFtools, FreeBayes and VarScan found the expected variants with higher precision and recall than GATK or iVar, although the latter identified more expected defining mutations than other callers. LoFreq gave the least reliable results due to the high number of false-positive mutations detected, resulting in lower precision. Similar results were obtained for both the synthetic and wastewater samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Algoritmos
3.
FEBS Lett ; 597(11): 1517-1527, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807196

RESUMO

An essential challenge in diagnosing states of nonalcoholic fatty liver disease (NAFLD) is the early prediction of progression from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) before the disease progresses. Histological diagnoses of NAFLD rely on the appearance of anomalous tissue morphologies, and it is difficult to segment the biomolecular environment of the tissue through a conventional histopathological approach. Here, we show that hyperspectral Raman imaging provides diagnostic information on NAFLD in rats, as spectral changes among disease states can be detected before histological characteristics emerge. Our results demonstrate that Raman imaging of NAFLD can be a useful tool for histopathologists, offering biomolecular distinctions among tissue states that cannot be observed through standard histopathological means.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia
4.
Microbiol Spectr ; 11(1): e0317722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36629447

RESUMO

Within months of the COVID-19 pandemic being declared on March 20, 2020, novel, more infectious variants of SARS-CoV-2 began to be detected in geospatially distinct regions of the world. With international travel being a lead cause of spread of the disease, the importance of rapidly identifying variants entering a country is critical. In this study, we utilized wastewater-based epidemiology (WBE) to monitor the presence of variants in wastewater generated in managed COVID-19 quarantine facilities for international air passengers entering the United Kingdom. Specifically, we developed multiplex reverse transcription quantitative PCR (RT-qPCR) assays for the identification of defining mutations associated with Beta (K417N), Gamma (K417T), Delta (156/157DEL), and Kappa (E154K) variants which were globally prevalent at the time of sampling (April to July 2021). The assays sporadically detected mutations associated with the Beta, Gamma, and Kappa variants in 0.7%, 2.3%, and 0.4% of all samples, respectively. The Delta variant was identified in 13.3% of samples, with peak detection rates and concentrations observed in May 2021 (24%), concurrent with its emergence in the United Kingdom. The RT-qPCR results correlated well with those from sequencing, suggesting that PCR-based detection is a good predictor for variant presence; although, inadequate probe binding may lead to false positive or negative results. Our findings suggest that WBE coupled with RT-qPCR may be used as a rapid, initial assessment to identify emerging variants at international borders and mass quarantining facilities. IMPORTANCE With the global spread of COVID-19, it is essential to identify emerging variants which may be more harmful or able to escape vaccines rapidly. To date, the gold standard to assess variants circulating in communities has been the sequencing of the S gene or the whole genome of SARS-CoV-2; however, that approach is time-consuming and expensive. In this study, we developed two duplex RT-qPCR assays to detect and quantify defining mutations associated with the Beta, Gamma, Delta, and Kappa variants. The assays were validated using RNA extracts derived from wastewater samples taken at quarantine facilities. The results showed good correlation with the results of sequencing and demonstrated the emergence of the Delta variant in the United Kingdom in May 2021. The assays developed here enable the assessment of variant-specific mutations within 2 h after the RNA extract was generated which is essential for outbreak rapid response.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Mutação , Pandemias , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA , SARS-CoV-2/genética , Águas Residuárias/virologia
5.
Gene Ther ; 29(12): 720-729, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35513551

RESUMO

Lentiviral vectors (LV) are attractive for permanent and effective gene therapy. However, integration into the host genome can cause insertional mutagenesis highlighting the importance of understanding of LV integration. Insertion site (IS) tethering is believed to involve cellular proteins such as PSIP1/LEDGF/p75, which binds to the virus pre-integration complexes (PICs) helping to target the virus genome. Transcription factors (TF) that bind both the vector LTR and host genome are also suspected influential to this. To determine the role of TF in the tethering process, we mapped predicted transcription factor binding sites (pTFBS) near to IS chosen by HIV-1 LV using a narrow 20 bp window in infected human induced pluripotent stem cells (iPSCs) and their hepatocyte-like cell (HLC) derivatives. We then aligned the pTFBS with these sequences found in the LTRs of native and self-inactivated LTRs. We found significant enrichment of these sequences for pTFBS essential to HIV-1 life cycle and virus survival. These same sites also appear in HIV-1 patient IS and in mice infected with HIV-1 based LV. This in silco data analysis suggests pTFBS present in the virus LTR and IS sites selected by HIV-1 LV are important to virus survival and propagation.


Assuntos
Infecções por HIV , HIV-1 , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Lentivirus/genética , HIV-1/genética , Integração Viral/genética , Fatores de Transcrição/genética , Sítios de Ligação
6.
Oncol Lett ; 21(1): 9, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33240415

RESUMO

Malignant melanomas within the eye present different types of metabolic and metastatic behavior. Uveal melanoma (UM) affects a quarter of a million individuals in the USA; however, the molecular pathogenesis is not well understood. Although UV radiation is a risk factor in cutaneous melanomas, it is not crucial for UM progression. Apart from chromosomal abnormalities, numerous major tumorigenic signaling pathways, including the PI3K/Akt, MAPK/ERK, Ras-association domain family 1 isoform A and Yes-associated protein/transcriptional co-activator with PDZ-binding motif signaling pathways, are associated with intraocular tumors. The present review describes the current insights regarding these signaling pathways that regulate the cell cycle and apoptosis, and could be used as potential targets for the treatment of UMs.

7.
FEBS Lett ; 593(18): 2535-2544, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254349

RESUMO

Histopathology requires the expertise of specialists to diagnose morphological features of cells and tissues. Raman imaging can provide additional biochemical information to benefit histological disease diagnosis. Using a dietary model of nonalcoholic fatty liver disease in rats, we combine Raman imaging with machine learning and information theory to evaluate cellular-level information in liver tissue samples. After increasing signal-to-noise ratio in the Raman images through superpixel segmentation, we extract biochemically distinct regions within liver tissues, allowing for quantification of characteristic biochemical components such as vitamin A and lipids. Armed with microscopic information about the biochemical composition of the liver tissues, we group tissues having similar composition, providing a descriptor enabling inference of tissue states, contributing valuable information to histological inspection.


Assuntos
Aprendizado de Máquina , Hepatopatia Gordurosa não Alcoólica/patologia , Análise Espectral Raman , Animais , Fígado/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Razão Sinal-Ruído
8.
Genes (Basel) ; 9(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060465

RESUMO

The bacterium Escherichia coli contains a single circular chromosome with a defined architecture. DNA replication initiates at a single origin called oriC. Two replication forks are assembled and proceed in opposite directions until they fuse in a specialised zone opposite the origin. This termination area is flanked by polar replication fork pause sites that allow forks to enter, but not to leave. Thus, the chromosome is divided into two replichores, each replicated by a single replication fork. Recently, we analysed the replication parameters in E. coli cells, in which an ectopic origin termed oriZ was integrated in the right-hand replichore. Two major obstacles to replication were identified: (1) head-on replication⁻transcription conflicts at highly transcribed rrn operons, and (2) the replication fork trap. Here, we describe replication parameters in cells with ectopic origins, termed oriX and oriY, integrated into the left-hand replichore, and a triple origin construct with oriX integrated in the left-hand and oriZ in the right-hand replichore. Our data again highlight both replication⁻transcription conflicts and the replication fork trap as important obstacles to DNA replication, and we describe a number of spontaneous large genomic rearrangements which successfully alleviate some of the problems arising from having an additional origin in an ectopic location. However, our data reveal additional factors that impact efficient chromosome duplication, highlighting the complexity of chromosomal architecture.

9.
Stud Health Technol Inform ; 251: 215-218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29968641

RESUMO

Policy and procedure manuals provide guidance on the operation and governance of medical device registries. In Saudi Arabia, the Saudi Food and Drug Authority (SFDA) has been developing and implementing a comprehensive national registry for implantable medical devices to facilitate the monitoring of device outcomes through post-market surveillance studies. To help guide the operations of this registry, the SFDA developed a policy and procedure manual. This paper reports on the design of the framework used to develop that manual over the course of one year (2015-2016), using a variety of literature sources, and working with medical device registry and health systems experts. The policy and procedure manual included five key principal level categories, which led to the subsequent creation of seven policies and 28 relevant procedures. The five principal categories were: Staff Engagement, Information Governance, Quality and Auditing, Research, and Reporting. The results of this work could be used to guide the development of policies and procedures for other implantable medical device registries.


Assuntos
Próteses e Implantes , Sistema de Registros , Políticas , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA