Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(1): 87-92, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229759

RESUMO

Current therapy for primary amoebic meningoencephalitis (PAM), a highly lethal brain infection in humans caused by Naegleria fowleri amoeba, is restricted to repurposed drugs with limited efficacy and success. Discovery of an antiamoebic benzylamine scaffold 2 precipitated a medicinal chemistry effort to improve potency, cytotoxicity profile, and drug-like properties. Thirty-four compounds were prepared, leading to compound 28 with significant gains in potency (EC50 = 0.92 µM), solubility, and microsomal stability and a demonstrated absence of cytotoxicity in SH-SY5Y human neuroblastoma cells (CC50 > 20 µM). The compounds demonstrated excellent blood-brain barrier permeability in an in vitro assay, thereby providing a new structural scaffold that inhibits N. fowleri viability and permits the investigation of therapeutic interventions in an understudied neglected disease.

2.
Antimicrob Agents Chemother ; 66(6): e0237321, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35604214

RESUMO

Infection with pathogenic free-living amoebae, including Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris, can lead to life-threatening illnesses, primarily because of catastrophic central nervous system involvement. Efficacious treatment options for these infections are lacking, and the mortality rate due to infection is high. Previously, we evaluated the N. fowleri glucokinase (NfGlck) as a potential target for therapeutic intervention, as glucose metabolism is critical for in vitro viability. Here, we extended these studies to the glucokinases from two other pathogenic free-living amoebae, including Acanthamoeba castellanii (AcGlck) and B. mandrillaris (BmGlck). While these enzymes are similar (49.3% identical at the amino acid level), they have distinct kinetic properties that distinguish them from each other. For ATP, AcGlck and BmGlck have apparent Km values of 472.5 and 41.0 µM, while Homo sapiens Glck (HsGlck) has a value of 310 µM. Both parasite enzymes also have a higher apparent affinity for glucose than the human counterpart, with apparent Km values of 45.9 µM (AcGlck) and 124 µM (BmGlck) compared to ~8 mM for HsGlck. Additionally, AcGlck and BmGlck differ from each other and other Glcks in their sensitivity to small molecule inhibitors, suggesting that inhibitors with pan-amoebic activity could be challenging to generate.


Assuntos
Acanthamoeba , Amebíase , Amoeba , Balamuthia mandrillaris , Naegleria fowleri , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Glucoquinase , Humanos
3.
Org Lett ; 23(15): 5799-5803, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34251832

RESUMO

An expedient route to enantiopure, diastereomeric pyrrolopyrazinoquinazolinones was developed following the discovery of a domino quinazolinone rearrangement-intramolecular cyclization of N-H benzamidines. A Ugi-Mumm-Staudinger sequence employing an optically pure proline derivative gave quinazolinones that, upon N-Boc deprotection, rearranged to tautomeric Z-benzamidines. Subsequent spontaneous cyclization afforded 15 diastereomeric pyrazinoquinazolinone pairs in up to 83% overall yield and 89:11 d.r which were separated easily via routine chromatographic purification-the only one required in the entire process.


Assuntos
Benzamidinas/química , Prolina/química , Quinazolinonas/síntese química , Ciclização , Estrutura Molecular , Quinazolinonas/química , Estereoisomerismo
4.
ACS Med Chem Lett ; 11(12): 2382-2388, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33335660

RESUMO

Toxoplasma gondii causes a prevalent human infection for which only the acute stage has an FDA-approved therapy. To find inhibitors of both the acute stage parasites and the persistent cyst stage that causes a chronic infection, we repurposed a compound library containing known inhibitors of parasitic hexokinase, the first step in the glycolysis pathway, along with a larger collection of new structural derivatives. The focused screen of 22 compounds showed a 77% hit rate (>50% multistage inhibition) and revealed a series of aminobenzamide-linked picolinic acids with submicromolar potency against both T. gondii parasite forms. Picolinic acid 23, designed from an antiparasitic benzamidobenzoic acid class with challenging ADME properties, showed 60-fold-enhanced solubility, a moderate LogD7.4, and a 30% improvement in microsomal stability. Furthermore, isotopically labeled glucose tracing revealed that picolinic acid 23 does not function by hexokinase inhibition. Thus, we report a new probe scaffold to interrogate dual-stage inhibition of T. gondii.

6.
J Org Chem ; 85(2): 464-481, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31786917

RESUMO

An anionic annulation strategy employing isatoic anhydrides and a wide assortment of enolizable partners was developed to afford over 80 novel ring-fused, N-substituted 4-quinolinones, an underrepresented privileged template. Multiple factors governing the efficiency of the transformation were determined, resulting in a reliable and tunable synthetic platform applicable for a broad range of substrates with variable deprotonation susceptibility, such as tetramic and tetronic acids, cyclic 1,3-diketones, and cycloalkanones. Application to the synthesis of bioactive, pyrrolizine-fused 4-quinolinone, penicinotam 3, resulted in the most brief and highest yielding total synthesis of the alkaloid in three steps and a 36% overall yield.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30783001

RESUMO

Infection with the free-living amoeba Naegleria fowleri leads to life-threatening primary amoebic meningoencephalitis. Efficacious treatment options for these infections are limited, and the mortality rate is very high (∼98%). Parasite metabolism may provide suitable targets for therapeutic design. Like most other organisms, glucose metabolism is critical for parasite viability, being required for growth in culture. The first enzyme required for glucose metabolism is typically a hexokinase (HK), which transfers a phosphate from ATP to glucose. The products of this enzyme are required for both glycolysis and the pentose phosphate pathway. However, the N. fowleri genome lacks an obvious HK homolog and instead harbors a glucokinase (Glck). The N. fowleri Glck (NfGlck) shares limited (25%) amino acid identity with the mammalian host enzyme (Homo sapiens Glck), suggesting that parasite-specific inhibitors with anti-amoeba activity can be generated. Following heterologous expression, NfGlck was found to have a limited hexose substrate range, with the greatest activity observed with glucose. The enzyme had apparent Km values of 42.5 ± 7.3 µM and 141.6 ± 9.9 µM for glucose and ATP, respectively. The NfGlck structure was determined and refined to 2.2-Å resolution, revealing that the enzyme shares greatest structural similarity with the Trypanosoma cruzi Glck. These similarities include binding modes and binding environments for substrates. To identify inhibitors of NfGlck, we screened a small collection of inhibitors of glucose-phosphorylating enzymes and identified several small molecules with 50% inhibitory concentration values of <1 µM that may prove useful as hit chemotypes for further leads and therapeutic development against N. fowleri.


Assuntos
Glucoquinase/química , Glucoquinase/metabolismo , Naegleria fowleri/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Glucose/metabolismo , Humanos , Trypanosoma cruzi/enzimologia
8.
Angew Chem Int Ed Engl ; 54(45): 13318-22, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26361244

RESUMO

Treatment of 2-ethynylanilines with P(OPh)3 gives either 2,2-diphenoxy-2-λ(5)-phosphaquinolines or 2-phenoxy-2-λ(5)-phosphaquinolin-2-ones under transition-metal-free conditions. This reaction offers access to an underexplored heterocycle, which opens up the study of the fundamental nature of the N=P(V) double bond and its potential for delocalization within a cyclic π-electron system. This heterocycle can serve as a carbostyril mimic, with application as a bioisostere for pharmaceuticals based on the 2-quinolinone scaffold. It also holds promise as a new fluorophore, since initial screening reveals quantum yields upwards of 40%, Stokes shifts of 50-150 nm, and emission wavelengths of 380-540 nm. The phosphaquinolin-2-ones possess one of the strongest solution-state dimerization constants for a D-A system (130 M(-1)) owing to the close proximity of a strong acceptor (P=O) and a strong donor (phosphonamidate N-H), which suggests that they might hold promise as new hydrogen-bonding hosts for optoelectronic sensing.


Assuntos
Quinolinas/síntese química , Quinolonas/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Quinolinas/química , Quinolonas/química
9.
J Med Chem ; 58(15): 5770-80, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26103061

RESUMO

Myotonic dystrophy type 1 (DM1) is a disease characterized by errors in alternative splicing, or "mis-splicing". The causative agent of mis-splicing in DM1 is an inherited CTG repeat expansion located in the 3' untranslated region of the DM protein kinase gene. When transcribed, CUG repeat expansion RNA sequesters muscleblind-like (MBNL) proteins, which constitute an important family of alternative splicing regulators. Sequestration of MBNL proteins results in the mis-splicing of its regulated transcripts. Previous work has demonstrated that pentamidine, a diamidine which is currently FDA-approved as an antiparasitic agent, was able to partially reverse mis-splicing in multiple DM1 models, albeit at toxic concentrations. In this study, we characterized a series of pentamidine analogues to determine their ability to reverse mis-splicing and their toxicity in vivo. Experiments in cell and mouse models demonstrated that compound 13, also known as furamidine, effectively reversed mis-splicing with equal efficacy and reduced toxicity compared to pentamidine.


Assuntos
Amidinas/uso terapêutico , Distrofia Miotônica/tratamento farmacológico , Amidinas/química , Amidinas/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Masculino , Relação Estrutura-Atividade
10.
Tetrahedron Lett ; 56(27): 4109-4111, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26097266

RESUMO

We describe an efficient method for the direct preparation of N-substituted aryl amidines from nitriles and primary amines. The protocol employs activation of amines by a strong base and provides greater access to a pharmaceutically relevant functional group. This synthetic approach tolerates deactivated nitriles, nitriles with competing substitution sites, and aryl amines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA