Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746414

RESUMO

SARS-CoV-2 continues to be a public health burden, driven in-part by its continued antigenic diversification and resulting emergence of new variants. While increasing herd immunity, current vaccines, and therapeutics have improved outcomes for some; prophylactic and treatment interventions that are not compromised by viral evolution of the Spike protein are still needed. Using a rationally designed SARS-CoV-2 Receptor Binding Domain (RBD) - ACE2 fusion protein and differential selection process with native Omicron RBD protein, we developed a recombinant human monoclonal antibody (hmAb) from a convalescent individual following SARS-CoV-2 Omicron infection. The resulting hmAb, 1301B7 potently neutralized a wide range of SARS-CoV-2 variants including the original Wuhan and more recent Omicron JN.1 strain, as well as SARS-CoV. Structure determination of the SARS-CoV-2 EG5.1 Spike/1301B7 Fab complex by cryo-electron microscopy at 3.1Å resolution demonstrates 1301B7 contacts the ACE2 binding site of RBD exclusively through its VH1-69 heavy chain, making contacts using CDRs1-3, as well as framework region 3 (FR3). Broad specificity is achieved through 1301B7 binding to many conserved residues of Omicron variants including Y501 and H505. Consistent with its extensive binding epitope, 1301B7 is able to potently diminish viral burden in the upper and lower respiratory tract and protect mice from challenge with Omicron XBB1.5 and Omicron JN.1 viruses. These results suggest 1301B7 has broad potential to prevent or treat clinical SARS-CoV-2 infections and to guide development of RBD-based universal SARS-CoV-2 prophylactic vaccines and therapeutic approaches.

2.
Front Cell Infect Microbiol ; 14: 1357866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375361

RESUMO

Following virus recognition of host cell receptors and viral particle/genome internalization, viruses replicate in the host via hijacking essential host cell machinery components to evade the provoked antiviral innate immunity against the invading pathogen. Respiratory viral infections are usually acute with the ability to activate pattern recognition receptors (PRRs) in/on host cells, resulting in the production and release of interferons (IFNs), proinflammatory cytokines, chemokines, and IFN-stimulated genes (ISGs) to reduce virus fitness and mitigate infection. Nevertheless, the game between viruses and the host is a complicated and dynamic process, in which they restrict each other via specific factors to maintain their own advantages and win this game. The primary role of the non-structural protein 1 (NS1 and Nsp1) of influenza A viruses (IAV) and the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively, is to control antiviral host-induced innate immune responses. This review provides a comprehensive overview of the genesis, spatial structure, viral and cellular interactors, and the mechanisms underlying the unique biological functions of IAV NS1 and SARS-CoV-2 Nsp1 in infected host cells. We also highlight the role of both non-structural proteins in modulating viral replication and pathogenicity. Eventually, and because of their important role during viral infection, we also describe their promising potential as targets for antiviral therapy and the development of live attenuated vaccines (LAV). Conclusively, both IAV NS1 and SARS-CoV-2 Nsp1 play an important role in virus-host interactions, viral replication, and pathogenesis, and pave the way to develop novel prophylactic and/or therapeutic interventions for the treatment of these important human respiratory viral pathogens.


Assuntos
COVID-19 , Vírus da Influenza A , Humanos , Imunidade Inata , Vírus da Influenza A/genética , Interferons/imunologia , SARS-CoV-2/metabolismo , Replicação Viral
3.
Pathogens ; 12(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38133267

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in both domestic and wild birds during the winter seasons in several countries in the Northern Hemisphere, most likely because virus-infected wild ducks overwinter and serve as the primary source of infection for other birds in these countries. Several chemical disinfectants are available to deactivate these viruses outside a living organism. However, their virucidal activity is known to be compromised by various factors, including temperature and contamination with organic matter. Hence, the effectiveness of virucidal activity under winter field conditions is crucial for managing HPAIV outbreaks. To investigate the impact of the winter field conditions on the virucidal activity of disinfectants against AIVs, we assessed the stability of the virucidal activity of seven representative disinfectants that are commercially available for poultry farms in Japan against both LPAIVs and HPAIVs under cold and/or organic contamination conditions. Of the seven disinfectants examined, the ortho-dichlorobenzene/cresol-based disinfectant exhibited the most consistent virucidal activity under winter field conditions, regardless of the virus pathogenicity or subtype tested.

4.
Vaccines (Basel) ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38005960

RESUMO

Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.

5.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581931

RESUMO

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family of receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, ErbB2, and ErbB4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, proinflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production, and disruption of blood-brain barrier integrity in microfluidics-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof of principle for a repurposed, ErbB-targeted approach to combat emerging viruses.


Assuntos
COVID-19 , Hepatite C Crônica , Animais , Humanos , Camundongos , Antivirais/farmacologia , Citocinas , Inflamação/tratamento farmacológico , Lapatinib/farmacologia , SARS-CoV-2
6.
J Gen Virol ; 104(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37351928

RESUMO

During the 2020/21 winter season, 29 and 10 H5N8 high pathogenicity avian influenza viruses (HPAIVs) were isolated from environmental water and wild birds, respectively, in Kagoshima prefecture, Japan. Furthermore, seven subtypes of low pathogenicity avian influenza viruses (LPAIVs) were also isolated; H1N1, H2N9, H3N2, H3N6, H3N8, H4N6, and H6N6 subtypes. While the H5 hemagglutinin (HA) genes of the G1 cluster were isolated throughout the winter season, those of the G2 cluster were also detected in late winter, suggesting that H5 HPAIVs possessing H5 HA genes from the two different clusters were individually introduced into Kagoshima prefecture. Intriguingly, genetic constellations revealed that the H5N8 HPAIVs could be classified into six genotypes, including four previously reported genotypes (E1, E2, E3, and E7), and two new genotypes (tentatively named E8 and E9). The PB1 and PA gene segments of genotypes E8 and E9 shared high similarity with those of LPAIVs, whereas the remaining gene segments were close to those of genotype E1. Furthermore, LPAIVs whose PA gene segment was close to that of genotype E9 were isolated from the environmental water. Overall, we revealed that various HPAIV genotypes circulated in Kagoshima prefecture during the 2020/21 winter season. This study highlights the importance of monitoring both HPAIV and LPAIV to better understand AIV ecology in migratory waterfowl populations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Animais , Japão , Estações do Ano , Vírus da Influenza A Subtipo H3N2 , Animais Selvagens , Influenza Aviária/epidemiologia , Vírus da Influenza A/genética , Genótipo , Filogenia
7.
Sci Adv ; 9(13): eade8778, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989354

RESUMO

Vaccines and drugs have helped reduce disease severity and blunt the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease [Mpro; 3C-like protease (3CLpro)] of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Inibidores de Proteases/química , Filogenia , Peptídeo Hidrolases
8.
Microbiol Immunol ; 67(4): 185-193, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36628409

RESUMO

Newcastle disease caused by highly pathogenic viruses of avian paramyxovirus serotype-1 (APMV-1) is a highly contagious poultry disease. Although a large-scale epidemic of Newcastle disease had occurred in Japan between the 1950s and the 2000s, there have been no outbreaks anywhere since 2010. In addition, there are no reports of epidemiological surveys of APMV-1 in wild birds in Japan in the last 10 years. We conducted the first epidemiological survey of APMV-1 in the Izumi plain, Kagoshima prefecture of southern Japan from the winter of 2018 to 2022. A total of 15 APMV-1 strains were isolated, and isolation rates from roosting water and duck fecal samples were 2.51% and 0.10%, respectively. These results indicate that the isolation method from environmental water may be useful for efficient surveillance of APMV-1 in wild birds. Furthermore, this is the first report on the success of APMV-1 isolation from environmental water samples. Genetic analysis of the Fusion (F) gene showed that all APMV-1 isolates were closely related to virus strains circulating among waterfowl in Far East Asian countries. All isolates have avirulent motifs in their cleavage site of F genes, all of which were presumed to be low pathogenic viruses in poultry. However, pathogenicity test using embryonated chicken eggs demonstrated that some isolates killed all chicken embryos regardless of viral doses inoculated (102 -106 50% egg infectious dose). These results indicated that APMV-1 strains, which are potentially pathogenic to chickens, are continuously brought into the Izumi plain by migrating wild birds.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Embrião de Galinha , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Japão/epidemiologia , Sorogrupo , Estações do Ano , Filogenia , Animais Selvagens
9.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159337

RESUMO

Targeting host factors exploited by multiple viruses could offer broad-spectrum solutions for pandemic preparedness. Seventeen candidates targeting diverse functions emerged in a screen of 4,413 compounds for SARS-CoV-2 inhibitors. We demonstrated that lapatinib and other approved inhibitors of the ErbB family receptor tyrosine kinases suppress replication of SARS-CoV-2, Venezuelan equine encephalitis virus (VEEV), and other emerging viruses with a high barrier to resistance. Lapatinib suppressed SARS-CoV-2 entry and later stages of the viral life cycle and showed synergistic effect with the direct-acting antiviral nirmatrelvir. We discovered that ErbB1, 2 and 4 bind SARS-CoV-2 S1 protein and regulate viral and ACE2 internalization, and they are required for VEEV infection. In human lung organoids, lapatinib protected from SARS-CoV-2-induced activation of ErbB-regulated pathways implicated in non-infectious lung injury, pro-inflammatory cytokine production, and epithelial barrier injury. Lapatinib suppressed VEEV replication, cytokine production and disruption of the blood-brain barrier integrity in microfluidic-based human neurovascular units, and reduced mortality in a lethal infection murine model. We validated lapatinib-mediated inhibition of ErbB activity as an important mechanism of antiviral action. These findings reveal regulation of viral replication, inflammation, and tissue injury via ErbBs and establish a proof-of-principle for a repurposed, ErbB-targeted approach to combat emerging viruses.

10.
Front Cell Infect Microbiol ; 13: 1232772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249300

RESUMO

Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.


Assuntos
Quirópteros , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Animais , Humanos , Vírus da Influenza A Subtipo H3N2 , Zoonoses , Animais Selvagens , Vírus da Influenza A/genética , SARS-CoV-2
11.
Pathogens ; 11(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36145445

RESUMO

The Izumi plain in the Kagoshima Prefecture, Japan, is known as an overwintering site for more than 30,000 migratory waterfowl, including endangered crane species. We previously reported that environmental water samples, from artificial wet paddies created as crane roost sites on the Izumi plain, are useful for avian influenza virus (AIV) surveillance. During the 2019/20 winter season, we collected 238 water samples from the crane roost sites and isolated 22 AIVs of six subtypes: one H1N1, one H3N2, seven H3N8, four H4N6, nine H6N6, and one H11N2 subtypes. Genetic analyses revealed that AIVs of the same subtype isolated from the Izumi plain during a single winter season exhibited multiple genetic constellations. Furthermore, phylogenetic analyses suggested that our H3N2 isolate may be a genetic reassortant between close relatives to our H3N8 and H11N2 isolates. Our study highlighted the importance of monitoring AIV circulation to better understand AIV ecology in migratory waterfowl populations.

12.
bioRxiv ; 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35982678

RESUMO

Vaccines and drugs have helped reduce disease severity and blunt the spread of SARS-CoV-2. However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease (Mpro/3CLpro) of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.

13.
PLoS Pathog ; 18(7): e1010691, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862475

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2 , Redução de Peso
14.
Transbound Emerg Dis ; 69(5): e2889-e2897, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35737749

RESUMO

Environmental water-targeted surveillance of migratory aquatic birds at overwintering sites is potentially one of the most effective approaches for understanding the ecology of avian influenza viruses (AIVs). In this study, we improved the method for AIV isolation from environmental water samples by making a minor modification to our previously reported process. We experimentally demonstrated that the AIV recovery efficiency of the modified method was 10-100-fold higher than that of the original method. This improved isolation method allowed us to isolate a considerably larger number of AIV isolates from environmental water samples collected at an overwintering site for tens of thousands of migratory aquatic birds in Japan during the 2018/2019 winter season, compared with those during previous winter seasons. Genetic and phylogenetic analyses revealed that AIVs of the same subtypes with multiple genetic constellations were circulating in a single overwintering site during a single winter season. These findings indicate that our improved isolation method contributes to enhance environmental water-targeted surveillance and to a better understanding of AIV ecology in migratory aquatic bird populations by monitoring ongoing AIV circulation.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Aves , Filogenia , Água
15.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33616517

RESUMO

Since the influenza pandemic in 2009, the causative agent 'A(H1N1)pdm09 virus', has been circulating in both human and swine populations. Although phylogenetic analyses of the haemagglutinin (HA) gene segment have revealed broader genetic diversity of A(H1N1)pdm09-related swine influenza A viruses (swIAVs) compared with human A(H1N1)pdm09 viruses, it remains unclear whether the genetic diversity reflects the antigenic differences in HA. To assess the impact of the diversity of the HA gene of A(H1N1)pdm09-related swIAVs on HA antigenicity, we characterized 12 swIAVs isolated in Japan from 2013 to 2018. We used a ferret antiserum and a panel of anti-HA mouse monoclonal antibodies (mAbs) raised against an early A(H1N1)pdm09 isolate. The neutralization assay with the ferret antiserum revealed that five of the 12 swIAVs were significantly different in their HA antigenicity from the early A(H1N1)pdm09 isolate. The mAbs also showed differential neutralization patterns depending on the swIAV strains. In addition, the single amino acid substitution at position 190 of HA, which was found in one of the five antigenically different swIAVs but not in human isolates, was shown to be one of the critical determinants for the antigenic difference of swIAV HAs. Two potential N-glycosylation sites at amino acid positions 185 and 276 of the HA molecule were identified in two antigenically different swIAVs. These results indicated that the genetic diversity of HA in the A(H1N1)pdm09-related swIAVs is associated with their HA antigenic variation. Our findings highlighted the need for surveillance to monitor the emergence of swIAV antigenic variants with public health importance.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Substituição de Aminoácidos , Animais , Variação Antigênica , Cães , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/virologia , Japão , Camundongos , Infecções por Orthomyxoviridae/virologia , Filogenia , Suínos/virologia
16.
Pathogens ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557405

RESUMO

We isolated two highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N8 clade 2.3.4.4b from falcated duck (Anas falcata) feces and environmental water collected at an overwintering site in Japan. Our isolates were almost genetically identical to each other and showed high genetic similarity with H5N8 HPAIVs recently isolated in South Korea, a distant part of Japan, and European countries. These results suggest the potential role of falcated ducks in the dissemination of HPAIVs.

17.
Arch Virol ; 165(3): 643-659, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925543

RESUMO

The Izumi plain in Kagoshima Prefecture, Japan, is an overwintering site for migratory ducks and endangered cranes. We have surveyed avian influenza viruses (AIVs) in this area since 2012 and isolated low-pathogenic AIVs (LPAIVs) of various subtypes every winter season. H3N8 LPAIVs were isolated during the 2012/13 and 2016/17 seasons, and H4N6 LPAIVs were isolated during the 2012/13 and 2013/14 seasons. In the 2017/18 season, one H3N8 and two H4N6 LPAIV strains were isolated from environmental water samples. Genetic and phylogenetic analysis for each gene segment from these H3N8 and H4N6 LPAIVs suggested that our isolates were genetic reassortants generated by intermixing between AIVs circulating not only in Eurasia but also in Africa and/or North America. Comparison of the genetic constellations of our three isolates with their counterparts isolated during previous seasons from the Izumi plain revealed a drastic transition in the genetic constellations of both subtypes. These findings emphasize the importance of continuous surveillance of AIVs on the Izumi plain.


Assuntos
Aves/virologia , Patos/virologia , Genoma Viral/genética , Vírus da Influenza A Subtipo H3N8/genética , Influenza Aviária/virologia , África , Sequência de Aminoácidos , Migração Animal , Animais , Animais Selvagens/virologia , Sequência de Bases , Europa (Continente) , Variação Genética/genética , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Japão , América do Norte , Filogenia , Recombinação Genética/genética , Análise de Sequência de RNA
18.
Transbound Emerg Dis ; 66(2): 797-806, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30499632

RESUMO

During the 2016-2017 winter season, we isolated 33 highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype and three low pathogenic avian influenza viruses (LPAIVs) from debilitated or dead wild birds, duck faeces, and environmental water samples collected in the Izumi plain, an overwintering site for migratory birds in Japan. Genetic analyses of the H5N6 HPAIV isolates revealed previously unreported phylogenetic variations in the PB2, PB1, PA, and NS gene segments and allowed us to propose two novel genotypes for the contemporary H5N6 HPAIVs. In addition, analysis of the four gene segments identified close phylogenetic relationships between our three LPAIV isolates and the contemporary H5N6 HPAIV isolates. Our results implied the co-circulation and co-evolution of HPAIVs and LPAIVs within the same wild bird populations, thereby highlighting the importance of avian influenza surveillance targeting not only for HPAIVs but also for LPAIVs.


Assuntos
Aves , Genoma Viral , Genótipo , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Animais , Animais Selvagens , Patos , Influenza Aviária/virologia , Japão/epidemiologia , Filogenia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA