Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066007

RESUMO

In today's world, the significance of reducing energy consumption globally is increasing, making it imperative to prioritize energy efficiency in 5th-generation (5G) networks. However, it is crucial to ensure that these energy-saving measures do not compromise the Key Performance Indicators (KPIs), such as user experience, quality of service (QoS), or other important aspects of the network. Advanced wireless technologies have been integrated into 5G network designs at multiple network layers to address this difficulty. The integration of emerging technology trends, such as machine learning (ML), which is a subset of artificial intelligence (AI), and AI's rapid improvements have made the integration of these trends into 5G networks a significant topic of research. The primary objective of this survey is to analyze AI's integration into 5G networks for enhanced energy efficiency. By exploring this intersection between AI and 5G, we aim to identify potential strategies and techniques for optimizing energy consumption while maintaining the desired network performance and user experience.

2.
Sci Rep ; 14(1): 12523, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821974

RESUMO

This paper presents an analysis and prediction of the shear strength of wide-shallow reinforced concrete beams, utilizing Finite Element Analysis (FEA) and machine learning techniques. The methodology involves validating a detailed Finite Element Model (FEM) against experimental results, conducting a parametric study, and developing three Machine Learning prediction equations. The FEM captures concrete and steel behaviors, including cracking and crushing for concrete and linear isotropic properties for steel reinforcement. Loading and boundary conditions are defined for accuracy and validated against 13 experimental specimens, exhibiting a maximum 8% and 12% difference in loads and deflections, respectively. A parametric study generates a dataset of 77 wide beam configurations, exploring variations in beam widths, concrete strengths, compression rebars, and shear reinforcement. This dataset is used to develop machine learning models, including "Genetic Programming (GP)", "Evolutionary Polynomial Regression (EPR)", and "Artificial Neural Network (ANN)". Comparative analysis reveals GP and EPR models with over 95% correlation, while the ANN model outperforms with 99% accuracy. Sensitivity analysis underscores the significant influence of concrete strength and beam aspect ratio on shear strength. In conclusion, the study demonstrates the potential of FEA and machine learning models to predict shear strength in wide-shallow reinforced concrete beams, providing valuable insights for architectural design and engineering practices and emphasizing the role of concrete strength and beam geometry in shear behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA