Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 2): 132815, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825279

RESUMO

Modern environmental organic chemistry is focused on developing cost-efficient, versatile, environmentally acceptable catalytic chemicals that are also highly effective. Herein, hybrid calcium-chitosan nanocomposite films was prepared by doping calcium oxide molecules into a chitosan matrix at weight percentage (15, 20, and 25 % wt. chitosan­calcium) using an easy and affordable simple co-precipitation process. The CS-CaO nanocomposite's structure was elucidated using analytical techniques such as Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Based on the X ray diffraction (XRD) measurements, the crystallinity was reduced by the incorporation of the CaO molecules. Also, from the calculation of the Debye-Scherrer equation on this X-ray diffraction (XRD) pattern, the crystallite size was found to be 17.2 nm for the nanocomposite film with 20 % wt. The energy dispersive spectroscopy graph demonstrated the presence of the distinctive Ca element signals within the chitosan, with the amount in a sample of 20 % wt. being discovered to be 21.32 % wt. For the synthesis of bis-hydrazono[1,2,4]thiadiazoles, the obtained CS-CaO nanocomposite could be employed as a potent heterogeneous recyclable catalyst. Better reaction yields, quicker reactions, softer reaction conditions, and green reusable efficient biocatalysts for several uses are just a few advantages of this approach.

2.
Int J Biol Macromol ; 269(Pt 2): 131935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723542

RESUMO

Nanocomposites, blending the unique properties of inorganic nanoparticles with polymers, are gaining momentum in various industries. This study delves into the synthesis and characterization of barium oxide (BaO)-doped carboxymethyl cellulose (CMC) nanocomposites, focusing on their structural, optical, electrical, and dielectric properties. Using an in-situ polymerization method, CMC films were doped with 5 % and 10 % BaO nanoparticles. X-ray diffraction analysis revealed that the doped samples exhibited enhanced crystallinity compared to pure CMC, with crystallinity percentages measured at 37.95 % and 28.86 % for 5 % and 10 % BaO, respectively, indicating the successful incorporation of BaO. Scanning electron microscopy illustrated the distribution of BaO nanoparticles, showing spherical agglomerations on the film surface. SEM analysis reveals emergence of spherical agglomerations and bright spots on nanocomposite film surface upon BaO introduction, indicating BaO nanoparticles presence. Further, the BaO nanoparticles act as catalytic and nucleating agents, influencing crystalline structure nucleation and growth, potentially enhancing film homogeneity and structural integrity. In addition, UV-visible spectroscopy elucidated the optical properties, indicating a shift in the bandgap from indirect to direct with BaO addition. The bandgap values decrease upon the addition of BaO, indicating a transition from an amorphous to a nanocrystalline structure, with respective reduction percentages of 22.73 % and 10.71 % for the 5%BaO/CMC and 10 %BaO/CMC samples compared to CMC. Electrical conductivity measurements showed enhanced conductivity in 10 % BaO/CMC due to improved charge carrier mobility, supported by dielectric studies demonstrating increased dielectric. The introduction of 5 % and 10 % BaO resulted in reductions of approximately 62.06 % and 65.77 %, respectively, compared to the pure CMC sample. This decrease in dielectric loss indicates an enhancement in the electrical properties of the nanocomposites. This comprehensive investigation could give further insights into the different properties of BaO-doped CMC nanocomposites, offering insights into their potential applications in various fields such as electronics, energy storage, and optoelectronics.


Assuntos
Carboximetilcelulose Sódica , Nanocompostos , Nanocompostos/química , Carboximetilcelulose Sódica/química , Compostos de Bário/química , Difração de Raios X , Condutividade Elétrica
3.
Int J Biol Macromol ; 264(Pt 1): 129990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360246

RESUMO

In this study, a single step in situ sol-gel method was used to syntheses nanocomposite films using chitosan (CS) as the basis material, with the addition of silver oxide nanoparticles (Ag2O) at several weight percentages (5 %, 10 %, and 15 % Ag2O/CS). The structural characteristics of Ag2O/CS films were investigated using a range of analytical techniques. The presence of the primary distinctive peaks of chitosan was verified using FTIR spectra analysis. However, a minor displacement was observed in these peaks due to the chemical interaction occurring with silver oxide molecules. XRD analysis demonstrated a significant increase in the crystallinity of chitosan when it interacted with metal oxide nanoparticles. Furthermore, it is believed that the interaction between silver oxide and the active binding sites of chitosan is responsible for the evenly dispersed clusters shown in the micrographs of the chitosan surface, as well as the random aggregations within the pores. EDS technique successfully identified the presence of distinctive silver signals within the nanocomposite material, indicating the successful absorption of silver into the surface of the polymer. The developed Ag2O/CS nanocomposite showed promising antibacterial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus). Also, Ag2O/CS nanocomposite exhibited marked antifungal activity against Candida albicans, Aspergillus flavus, A. fumigatus, A. niger, and Penicillium chrysogenum. The antioxidant activity of the developed nanocomposite films was studied by ABTS radical scavenging. The highest antioxidant and antibacterial properties were achieved by including 15 % silver oxide into the chitosan. Therefore, our finding indicate that chitosan­silver oxide nanocomposites exhibits significant potential as a viable material for application in several sectors of the food packaging industry.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Nanocompostos , Óxidos , Compostos de Prata , Quitosana/química , Antioxidantes/farmacologia , Embalagem de Alimentos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Nanocompostos/química
4.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896376

RESUMO

Polymeric films made from chitosan (CS) doped with metal oxide (MO = cobalt (II) oxide and strontium oxide) nanoparticles at different concentrations (5, 10, 15, and 20% wt. MO/CS) were fabricated with the solution cast method. FTIR, SEM, and XRD spectra were used to study the structural features of those nanocomposite films. The FTIR spectra of chitosan showed the main characteristic peaks that are usually present, but they were shifted considerably by the chemical interaction with metal oxides. FTIR analysis of the hybrid chitosan-CoO nanocomposite exhibited notable peaks at 558 and 681 cm-1. Conversely, the FTIR analysis of the chitosan-SrO composite displayed peaks at 733.23 cm-1, 810.10 cm-1, and 856.39 cm-1, which can be attributed to the bending vibrations of Co-O and Sr-O bonds, respectively. In addition, the SEM graphs showed a noticeable morphological change on the surface of chitosan, which may be due to surface adsorption with metal oxide nanoparticles. The XRD pattern also revealed a clear change in the crystallinity of chitosan when it is in contact with metal oxide nanoparticles. The presence of characteristic signals for cobalt (Co) and strontium (Sr) are clearly shown in the EDX examinations, providing convincing evidence for their incorporation into the chitosan matrix. Moreover, the stability of the nanoparticle-chitosan coordinated bonding was verified from the accurate and broadly parametrized semi-empirical tight-binding quantum chemistry calculation. This leads to the determination of the structures' chemical hardness as estimated from the frontier's orbital calculations. We characterized the dielectric properties in terms of the real and imaginary dielectric permittivity as a function of frequency. Dielectric findings reveal the existence of extensive interactions of CoO and SrO, more pronounced for SrO, with the functional groups of CS through coordination bonding. This induces the charge transfer of the complexes between CoO and SrO and the CS chains and a decrease in the amount of the crystalline phase, as verified from the XRD patterns.

5.
Int J Biol Macromol ; 253(Pt 4): 126856, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37714231

RESUMO

This research aimed to prepare, characterize, and investigate the biological efficacy of chitosan­cobalt (II) oxide hybrid nanocomposites against a variety of micrograms. Analytical methods, FTIR, SEM, XRD, and EDX, were utilized to thoroughly characterize the produced CS-CoO nanocomposite. In FTIR spectra, the presence of the chitosan peaks in addition to that of CoO at 681 and 558 cm-1 confirmed that CoO molecules interact with the chitosan backbone. Moreover, in the XRD measurements, significantly less chitosan crystallinity was observed. Due to the incorporation of a larger amount of cobalt oxide within the polymer matrix. Applying the Debye-Sherrer calculation, the crystallite size was obviously reduced from 48.24 nm (5 wt %) to 19.27 nm (20 wt %) for the obtained nanocomposites. Furthermore, SEM measurements showed a transformation in the chitosan surface with the physical adsorption of CoO molecules on the surface active sites of chitosan that were visible in SEM graphs. Additionally, EDX determined the amount of Co element within the chitosan, with the sample of 20 wt % weight being found to be 19.26 wt %. The variable dose well-diffusion method was utilized to assess the efficacy of the CS-Co nanocomposite against a wide range of bacteria and fungi. CS - CoO nanocomposite is more effective than chitosan alone as an antibacterial agent against both Gram-positive and Gram-negative bacteria. Moreover, the MTT approach was employed to measure the cytotoxicity based on the cell viability of different cancer cell lines under different UV expositions. The proportion of the destroyed cells elevated due to the easy diffusion of CS - CoO nanocomposite into cancer cells as UV-free anticancer activity. UV exposition has stimulated the anticancer activity, which was attributed to an increase in ROS generation caused by the increased dose of the chitosan and its CS - CoO nanocomposites. Furthermore, the antioxidant capacities of the prepared nano-composites thin films were validated using the DPPH free radical scavenging method and showed good antioxidant activities with the DPPH radical compared with standard vitamin C. It has been noticed that by increasing the content of CoO nanoparticles from 5 to 20 wt %, the biological activity of the prepared nanocomposites was enhanced.


Assuntos
Quitosana , Nanocompostos , Quitosana/farmacologia , Quitosana/química , Antibacterianos/química , Antioxidantes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Óxidos/farmacologia , Cobalto , Nanocompostos/química , Preparações Farmacêuticas
6.
Polymers (Basel) ; 15(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765671

RESUMO

The diverse applications of metal oxide-biopolymer matrix as a nanocomposite heterogenous catalyst have caused many researches to scrutinize the potential of this framework. In this study, a novel hybrid barium oxide-chitosan nanocomposite was synthesized through a facile and cost-effective co-precipitation method by doping barium oxide nanoparticles within the chitosan matrix at a weight percentage of 20 wt.% BaO-chitosan. A thin film of the novel hybrid material was produced by casting the nanocomposite solution in a petri dish. Several instrumental methods, including Fourier-transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), were used to analyze and characterize the structure of the BaO-CS nanocomposite. The chemical interaction with barium oxide molecules resulted in a noticeable displacement of the most significant chitosan-specific peaks in the FTIR spectra. When the surface morphology of SEM graphs was analyzed, a dramatic morphological change in the chitosan surface was also discovered; this morphological change can be attributed to the surface adsorption of BaO molecules. Additionally, the patterns of the XRD demonstrated that the crystallinity of the material, chitosan, appears to be enhanced upon interaction with barium oxide molecules with the active sites, OH and NH2 groups, along the chitosan backbone. The prepared BaO-CS nanocomposite can be used successfully as an effective heterogenous recyclable catalyst for the reaction of N,N'-(alkane-diyl)bis(2-chloroacetamide) with 2-(arylidinehydrazine)-1-carbothioamide as a novel synthetic approach to prepare 2-hydrazonothiazol-4(5H)-ones. This new method provides a number of benefits, including quick and permissive reaction conditions, better reaction yields, and sustainable catalysts for multiple uses.

7.
Polymers (Basel) ; 14(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015604

RESUMO

Calcium oxide (CaO) nanoparticles have recently gained much interest in recent research due to their remarkable catalytic activity in various chemical transformations. In this article, a chitosan calcium oxide nanocomposite was created by the solution casting method under microwave irradiation. The microwave power and heating time were adjusted to 400 watts for 3 min. As it suppresses particle aggregation, the chitosan (CS) biopolymer acted as a metal oxide stabilizer. In this study, we aimed to synthesize, characterize, and investigate the catalytic potency of chitosan-calcium oxide hybrid nanocomposites in several organic transformations. The produced CS-CaO nanocomposite was analyzed by applying different analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). In addition, the calcium content of the nanocomposite film was measured using energy-dispersive X-ray spectroscopy (EDS). Fortunately, the CS-CaO nanocomposite (15 wt%) was demonstrated to be a good heterogeneous base promoter for high-yield thiazole production. Various reaction factors were studied to maximize the conditions of the catalytic technique. High reaction yields, fast reaction times, and mild reaction conditions are all advantages of the used protocol, as is the reusability of the catalyst; it was reused multiple times without a significant loss of potency.

8.
Polymers (Basel) ; 14(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890603

RESUMO

Recently, Strontium oxide (SrO) nanoparticles (NPs) and hybrids outperformed older commercial catalysts in terms of catalytic performance. Herein, we present a microwave-assisted easy in situ solution casting approach for the manufacture of strontium oxide nanoparticles doped within a naturally occurring polymer, chitosan (CS), at varying weight percentages (2.5, 5, 10, 15, and 20 wt.% SrO/chitosan). To construct the new hybrid material as a thin film, the produced nanocomposite solutions were cast in petri dishes. The aim of the research was to synthesize these hybrid nanocomposites, characterize them, and evaluate their catalytic potential in a variety of organic processes. The strontium oxide-chitosan nanocomposites were characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM) techniques. All the results confirmed the formation of chitosan-strontium oxide nanocomposite. FTIR spectrum of nanocomposite showed the presence of a characteristic peak of Sr-O bond. Furthermore, XRD revealed that SrO treatment increased the crystallinity of chitosan. The particle size was calculated using the Debye-Scherrer formula, and it was determined to be around 36 nm. The CS-SrO nanocomposite has been proven to be a highly efficient base promoter for the synthesis of 2-hydrazono [1,3,4]thiadiazole derivatives. To optimize the catalytic method, the reaction factors were investigated. The approach has various advantages, including higher reaction yields, shorter reaction durations, and milder reaction conditions, as well as the catalyst's reusability for several applications.

9.
Arab J Chem ; 15(9): 104101, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35845755

RESUMO

A novel series of bis- (Abdelhamid et al., 2017, Banerjee et al., 2018, Bharanidharan et al., 2022)thiadiazoles was synthesized from the reaction of precursor dimethyl 2,2'-(1,2-diphenylethane-1,2-diylidene)-bis(hydrazine-1-carbodithioate) and hydrazonyl chlorides in ethanol under ultrasonic irradiation. Spectral tools (IR. NMR, MS, elemental analyses, molecular dynamic simulation, DFT and LUMO and HOMO) were used to elucidate the structure of the isolated products. Molecular docking for the precursor, 3 and ligands 6a-i to two COVID-19 important proteins Mpro and RdRp was compared with two approved drugs, Remdesivir and Ivermectin. The binding affinity varied between the ligands and the drugs. The highest recorded binding affinity of 6c with Mpro was (-9.2 kcal/mol), followed by 6b and 6a, (-8.9 and -8.5 kcal/mol), respectively. The lowest recorded binding affinity was (-7.0 kcal/mol) for 6 g. In comparison, the approved drugs showed binding affinity (-7.4 and -7.7 kcal/mol), for Remdesivir and Ivermectin, respectively, which are within the range of the binding affinity of our ligands. The binding affinity of the approved drug Ivermectin against RdRp recoded the highest (-8.6 kcal/mol), followed by 6a, 6 h, and 6i are the same have (-8.2 kcal/mol). The lowest reading was found for compound 3 ligand (-6.3 kcal/mol). On the other side, the amino acids also differed between the compounds studied in this project for both the viral proteins. The ligand 6a forms three H-bonds with Thr 319(A), Sr 255(A) and Arg 457(A), whereas Ivermectin forms three H-bonds with His 41(A), Gly143(A) and Gln 18(A) for viral Mpro. The RdRp amino acids residues could be divided into four groups based on the amino acids that interact with hydrogen or hydrophobic interactions. The first group contained 6d, 6b, 6 g, and Remdesivir with 1-4 hydrogen bonds and hydrophobic interactions 1 to 10. Group 2 is 6a and 6f exhibited 1 and 3 hydrogen bonds and 15 and 14 hydrophobic interactions. Group 3 has 6e and Ivermectin shows 4 and 3 hydrogen bonds, respectively and 11 hydrophobic interactions for both compounds. The last group contains ligands 3, 6c, 6 h, and 6i gave 1-3 hydrogen bonds and 6c and 3 recorded the highest number of hydrophobic interactions, 14 for both 6c and 6 h. Pro Tox-II estimated compounds' activities as Hepatoxic, Carcinogenic and Mutagenic, revealing that 6f-h were inactive in all five similar to that found with Remdesivir and Ivermectin. The drug-likeness prediction was carried out by studying physicochemical properties, lipophilicity, size, polarity, insolubility, unsaturation, and flexibility. Generally, some properties of the ligands were comparable to that of the standards used in this study, Remdesivir and Ivermectin.

10.
Polymers (Basel) ; 14(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35160376

RESUMO

In recent years, nanotechnology has become a considerable research interest in the area of preparation of nanocatalysts based on naturally occurring polysaccharides. Chitosan (CS), as a naturally occurring biodegradable and biocompatible polysaccharide, is successfully utilized as an ideal template for the immobilization of metal oxide nanoparticles. In this study, zinc oxide nanoparticles have been doped within a chitosan matrix at dissimilar weight percentages (5, 10, 15, 20, and 25 wt.% CS/ZnO) and have been fabricated by using a simple solution casting method. The prepared solutions of the nanocomposites were cast in a Petri-dish and were subsequently shaped as a thin film. After that, the structural features of the nanocomposite film have been studied by measuring the FTIR, SEM, and XRD analytical tools. FTIR spectra showed the presence of some changes in the major characteristic peaks of chitosan due to interaction with ZnO nanoparticles. In addition, SEM graphs exhibited dramatic morphology changes on the chitosan surface, which is attributed to the surface adsorption of ZnO molecules. Based on the results of the investigated organic catalytic reactions, the prepared CS/ZnO nanocomposite film (20 wt.%) could be a viable an effective, recyclable, and heterogeneous base catalyst in the synthesis of thiazoles. The results showed that the nanocomposite film is chemically stable and can be collected and reused in the investigated catalytic reactions more than three times without loss of its catalytic activity.

11.
Polymers (Basel) ; 13(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34685340

RESUMO

Chitosan/magnesia hybrid films (CS-Mg) have been prepared via sol-gel process and employed as heterogeneous catalysts. An in situ generation of a magnesia network in the chitosan matrix was performed through hydrolysis/condensation reactions of magnesium ethoxide. The synthesized hybrid films were characterized using various analytical techniques, such as X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The hybrid films display excellent catalytic activities in Michael and Knoevenagel reactions via one pot or solvent-free approaches under microwave irradiation conditions. Chitosan/magnesia hybrid films, catalysed pyrimidine, benzochromene, coumarin and arylidene-malononitriles derivatives formation reactions occurred with highly efficient yields of 97%, 92%, 86% and 95% respectively. Due to the fact that the films are durable and insoluble in common organic solvents, they were easily separated and can be recycled up to five times without a considerable loss of their catalytic activity.

12.
Molecules ; 26(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204215

RESUMO

Recently, the development of nanocatalysts based on naturally occurring polysaccharides has received a lot of attention. Chitosan (CS), as a biodegradable and biocompatible polysaccharide, is considered to be an excellent template for the design of a hybrid biopolymer-based metal oxide nanocomposite. In this case, lanthanum oxide nanoparticles doped with chitosan at different weight percentages (5, 10, 15, and 20 wt% CS/La2O3) were prepared via a simple solution casting method. The prepared CS/La2O3 nanocomposite solutions were cast in a Petri dish in order to produce the developed catalyst, which was shaped as a thin film. The structural features of the hybrid nanocomposite film were studied by FTIR, SEM, and XRD analytical tools. FTIR spectra confirmed the presence of the major characteristic peaks of chitosan, which were modified by interaction with La2O3 nanoparticles. Additionally, SEM graphs showed dramatic morphological changes on the surface of chitosan, which is attributed to surface adsorption with La2O3 molecules. The prepared CS/La2O3 nanocomposite film (15% by weight) was investigated as an effective, recyclable, and heterogeneous base catalyst in the synthesis of pyridines and pyrazoles. The nanocomposite used was sufficiently stable and was collected and reused more than three times without loss of catalytic activity.


Assuntos
Quitosana/química , Pirazóis/química , Piridinas/química , Antibacterianos/química , Catálise , Lantânio/química , Nanocompostos/química , Nanopartículas/química , Óxidos/química
13.
Molecules ; 26(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069646

RESUMO

A series of high temperature alkyl and alkoxy biphenyltetracarboxydiimide liquid crystals have been prepared under ball mill method using solvent-free mechanochemical approach. The thermal properties of the prepared compounds were investigated by deferential scanning calorimetry (DSC) measurements and the textures were identified by polarized optical microscope (POM). The compounds showed smectic mesomorphic behaviour. The results showed the increasing nature of transition temperature Cr-SmC with chain length with increments of the SmC mesophase range. However, the mesophase range of the SmA was decreased with the terminal chain length either for the alkyl or alkoxy terminal groups. Moreover, the DFT theoretical calculations have been conducted give a detailed projection of the structure of the prepared compounds. A conformational investigation of the biphenyl part has been studied. A deep illustration of the experimental mesomorphic behaviour has been discussed in terms of the calculated aspect ratio. A projection of the frontier molecular orbitals as well as molecular electrostatic potential has been studied to show the effect of the polarity of the terminal chains on the level and the gab of the FMOs and the distribution of electrostatic charges on the prepared molecules.

14.
Polymers (Basel) ; 13(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916381

RESUMO

Chitosan-aluminum oxide nanocomposite was synthesized, characterized, and used as a green heterogeneous catalyst to synthesize novel imidazopyrazolylthione derivatives. Nanocomposite polymeric material was characterized by EDS-SEM and XRD. The powerful catalytic activity, and its base character of the nanocomposite, was used to synthesize imidazopyrazolylthione (1) in a good yield compared to traditional cyclocondensation synthesis. Using the nanocomposite catalyst, substitution of the thiol group (1) afforded the corresponding thiourea (2) and the corresponding ester (3). The efficiency of the nanocomposite over the traditional base organic catalyst, Et3N and NaOH, makes it an effective, economic, and reproducible nontoxic catalyst. Moreover, the heterogeneous nanocomposite polymeric film was easily isolated from the reaction medium, and recycled up to four times, without a significant loss of its catalytic activity. The newly synthesized derivatives were screened as antibacterial agents and showed high potency. Molecular docking was also performed for a more in-depth investigation. The results of the docking studies have demonstrated that the docked compounds have strong interaction energies with both Gram-positive and Gram-negative bacteria.

15.
Int J Biol Macromol ; 130: 928-937, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844456

RESUMO

Chitosan copper (II) oxide nanocomposite was synthesized, characterized and used to synthesize [1,2,3]triazoles. Nanocomposite was characterized by using FTIR, XRD, FESEM, and EDS techniques, which reflected rough morphology. The powerful catalytic activity of hybrid nanocomposite was utilized to synthesize chalcones (3a-p) in relatively high yields (82%-98%) and multicomponent regio-selective cycloaddition of chalones, aryl halides (4), and sodium azide to afford the expected N-2-aryl[1,2,3]triazoles (5a-h) (80%-95% yield) rather than N-1-aryl[1,2,3]-triazoles (6a-h). The performance of nanomaterial was optimized by several variables. The capability of the nanocomposite was compared with previous work and the nanocomposite was found more efficient, economic and reproducible. The hybrid nanocomposite could be easily isolated form the reaction mixture and recycled four times without any significant loss of its catalytic activity. The reported catalyst is an inexpensive for good yields of the triazoles and may be used at industrial production for the reported compounds.


Assuntos
Quitosana/química , Cobre/química , Química Verde , Nanocompostos/química , Triazóis/química , Azidas/química , Catálise , Chalcona/química , Reação de Cicloadição , Modelos Moleculares , Conformação Molecular , Triazóis/síntese química
16.
Nanomaterials (Basel) ; 8(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413060

RESUMO

A chitosan-MgO hybrid nanocomposite was prepared using a simple chemical precipitation method and characterized using Fourier transform spectroscopy (FTIR), elemental analysis (EDX), and scanning electron microscopy (SEM). The nanocomposite was served as a powerful ecofriendly basic catalyst under microwave irradiation in the synthesis of two novel series of 5-arylazo-2-hydrazonothiazoles 4a⁻j and 2-hydrazono[1,3,4]thiadiazoles 8a⁻d, incorporating a sulfonamide group. The structures of the synthesized products were elucidated by spectral data and elemental analyses. Also, their yield percentages were calculated using triethylamine (as a traditional catalyst) and chitosan-MgO nanocomposite (as a green recyclable catalyst) in a comparative study.

17.
Chem Biodivers ; 15(9): e1800231, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29956887

RESUMO

2-(1-{4-[(4-Methylphenyl)sulfonamido]phenyl}ethylidene)thiosemicarbazide (3) was exploited as a starting material for the synthesis of two novel series of 5-arylazo-2-hydrazonothiazoles 6a - 6j and 2-hydrazono[1,3,4]thiadiazoles 10a - 10d, incorporating sulfonamide group, through its reactions with appropriate hydrazonoyl halides. The structures of the newly synthesized products were confirmed by spectral and elemental analyses. Also, the antimicrobial, anticancer, and DHFR inhibition potency for two series of thiazoles and [1,3,4]thiadiazoles were evaluated and explained by molecular docking studies and SAR analysis.


Assuntos
Antagonistas do Ácido Fólico/farmacologia , Sulfonamidas/química , Tiazóis/síntese química , Tiazóis/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Girase/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Ácido Fólico/química , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Análise Espectral , Relação Estrutura-Atividade
18.
Molecules ; 18(5): 5288-305, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23698043

RESUMO

Chitosan-grafted-poly(4-vinylpyridine) (Cs-PVP) copolymers could be synthesized under heterogeneous conditions in presence of a potassium persulfate and sodium sulfite redox system. The synthesized graft copolymer could be utilized effectively, in the form of beads, as an efficient catalyst for Michael additions of active methylenes to functionally substituted alkenes. Moreover, methyl moiety oxidation in methyl pyridazinyl carbonitriles by H2O2 in the presence of chitosan-g-polyvinyl pyridine-supported iron (III) complex, Cs-PVP/Fe, could be affected. A variety of pyrans, naphthopyrans, and thiopyrans could be synthesized efficiently in the presence of these graft copolymer beads by novel catalytic routes. These polymeric catalysts could be used instead of the old toxic commercial organic basic catalysts, piperidine or pyridine, and could be readily isolated from the reaction mixture and recycled several times without significant loss of catalytic activity.


Assuntos
Quitosana/química , Peróxido de Hidrogênio/química , Polivinil/química , Catálise , Oxirredução
19.
Molecules ; 17(10): 12225-33, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23079493

RESUMO

Coupling of 2-benzylmalononitrile with aromatic diazonium salts afforded 3-phenyl-2-arylhydrazonopropanenitriles 4a,b, which were rearranged into 2-cyanoindoles 5a,b upon heating with ZnCl(2) in the presence of glacial acetic acid. The produced indole derivatives 5a,b can be successfully used as valuable precursors to synthesize 1,2,4-oxadiazolylindoles 8a,b. The reaction of arylhydrazononitriles 4a,b with hydroxylamine afforded an amidoximes 9a,b that could be cyclized into 1,2,3-triazole-4-amines 10a,b. In addition, 4a,b could be converted into 4-aminopyrazoles 12a,b via condensation with chloroacetonitrile in the presence of triethylamine as a basic catalyst. Finally, compounds 12a,b were refluxed with dimethylformamide dimethylacetal (DMFDMA) to afford amidines 13a,b that were readily cyclized to the corresponding pyrazolo[4,3-d]pyrimidines 14a,b when refluxed with ammonium acetate.


Assuntos
Nitrilas/química , Pirimidinas/síntese química , Indóis/química , Nitrilas/síntese química , Pirazóis/química , Pirimidinas/química , Triazóis/química
20.
Molecules ; 17(8): 9335-47, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22864241

RESUMO

Successful implementation of ultrasound irradiation for the rapid synthesis of a novel series of 3-[1-(4-substituted-5-(aryldiazenyl)thiazol-2-yl)hydrazono)ethyl]-2H-chromen-2-ones 5a-h, via reactions of 2-(1-(2-oxo-2H-chromen-3-yl)ethylidene) thiosemicarbazide (2) and the hydrazonoyl halides 3(4), was demonstrated. Also, a new series of 5-arylidene-2-(2-(1-(2-oxo-2H-chromen-3-yl)ethylidene)hydrazinyl)thiazol-4(5H)-ones 10a-d were synthesized from reaction of 2 with chloroacetic acid and different aldehydes. Moreover, reaction of 2-cyano-N'-(1-(2-oxo-2H-chromen-3-yl)ethylidene)-acetohydrazide (12) with substituted benzaldehydes gave the respective arylidene derivatives 13a-c under the conditions employed. The structures of the synthesized compounds were assigned based on elemental analyses and spectral data. Also, the cytototoxic activities of the thiazole derivative 5a was evaluated against HaCaT cells (human keratinocytes). It was found that compound 5a possess potent cytotoxic activity.


Assuntos
Cumarínicos/síntese química , Som , Tiazóis/síntese química , Acetona/análogos & derivados , Acetona/química , Acetofenonas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/toxicidade , Dioxanos/química , Química Verde , Humanos , Hidrazonas/química , Queratinócitos/efeitos dos fármacos , Semicarbazidas/química , Solventes/química , Tiazóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA