Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(32): 27839-27850, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990426

RESUMO

Well-organized zirconia (ZrO2) nanoparticles forming mesoporous materials have been successfully synthesized via a facile micelle-templating method using cetyltrimethylammonium bromide as a structure-directing template to control the nucleation/growth process and porosity. The systematic use of such a surfactant in combination with a microwave-assisted solvothermal (cyclohexane/water) reaction enabled the control of pore size in a narrow-size distribution range (3-17 nm). The effect of solvent mixture ratio on the porosity of the synthesized oxide was determined, and the controlled growth of zirconia nanoparticles was confirmed by means of powder X-ray diffraction, small-angle X-ray scattering, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy as well as N2 physisorption isotherm analysis. Then, the as-prepared nanostructured zirconia oxides were treated with sulfuric acid to have sulfated samples. The catalytic performances of these mesoporous zirconia nanoparticles and their sulfated samples were tested for levulinic acid (LA) esterification by ethanol, with quantitative conversions of LA to ethyl levulinate after 8 h of reaction.

2.
ACS Omega ; 7(32): 27831-27838, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990453

RESUMO

An innovative hybrid organic-inorganic material composed of alginate-brushite xerogel beads was successfully applied for the catalysis of the Knoevenagel condensation. The catalyst was derived from phosphated alginate xerogel microspheres formed from the ionotropic gelling effect of phosphated alginate. To this end, alginate was phosphated by the addition of diammonium hydrogen phosphate in a 1% w/w alginate gel. The phosphated alginate was subsequently precipitated by chelation of Ca2+ cations, generating a phosphated alginate hydrogel microsphere, which was washed and dried, forming hybrid organic-inorganic xerogel beads as a crystalline phosphate-rich mineral fraction covered by alginate. X-ray diffraction analysis revealed that the crystalline inorganic matrix of the material was composed predominantly of brushite. SEM analysis revealed plate-like, ribbon-like, or needle-like morphologies in the hybrid alginate-brushite beads. The hybrid material was tested as a catalyst for Knoevenagel condensation, which was performed ″on-water″ under mild conditions with aromatic aldehydes and activated methylene compounds, giving high yields (up to 97%). The reaction rate and product yield increased together with the reaction temperature for all reagents. The recyclable solid catalyst was effective for three runs, revealing the potential of the innovative hybrid catalyst as an eco-friendly heterogeneous catalyst.

3.
ACS Omega ; 5(1): 304-316, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956777

RESUMO

The conversion of poplar wood biomass to highly value-added chemicals and molecular building blocks was achieved by using the dispersed mixed oxide Zn3V2O8 (ZVO) in water under 100 kPa of 10% O2/N2 at 160, 180, and 200 °C for 4 h. This nanostructured mixed oxide was prepared via the precipitation process and then characterized by several techniques. The results showed that this mixed oxide has interesting catalytic properties and is a versatile catalyst for biomass delignification and lignin and hemicellulose depolymerization. ZVO exhibited high activity on poplar biomass delignification and fractionation (degree of delignification > 97%) and lignin and holocellulose conversion with high yield into aromatic and furan compounds (80 mg/g initial wood at 200 °C), with high selectivities for 5-hydroxymethylfurfural (HMF) (25 mg/g of initial wood), vanillin, and syringaldehyde.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA