Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38867666

RESUMO

Obstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 months) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice, and IH underlying mechanisms in cultured vascular smooth muscle cells (SMCs). IH increased abdominal aortic diameter and the incidence of AAA in mice infused with Ang II as assessed by transabdominal ultrasound imaging. Importantly, IH with Ang II augmented aortic elastin degradation and expression of matrix metalloproteinase (MMP)s, mainly MMP8, MMP12 and a disintegrin and metalloproteinase-17 (ADAM17) as measured by histology and immunohistochemistry. Mechanistically, IH increased the activities of MMP2, MMP8, MMP9, MMP12, and ADAM17, while reducing the expression of the MMP regulator, reversion inducing cysteine rich protein with kazal motifs (RECK) in cultured SMCs. Aortic samples from human AAA were associated with decreased RECK and increased expression of ADAM17 and MMPs. These data suggest that IH promotes the development of AAA in association with an increased expression of MMPs and ADAM17, while decreased expression of RECK may be responsible for the increased protease activity. These findings support a potential causal link between OSA and AAA and provide a better understanding of the molecular mechanisms underlying the pathogenesis of AAA.

2.
Sleep Med ; 114: 196-202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219655

RESUMO

STUDY OBJECTIVES: Lyme arthritis is a common late-stage complication of infection by Borrelia burgdorferi, the agent of Lyme disease. Patients with Lyme arthritis report increased levels of sleep disturbance associated with pain. Using a mouse model of experimental Lyme arthritis, we investigated the effect of disrupted sleep on the development and resolution of joint inflammation. METHODS: Lyme arthritis-susceptible C3H/HeJ mice (n = 10/group) were infected with B. burgdorferi and were left either alone (control) or subjected to sleep fragmentation (SF). Arthritis development or resolution were monitored. The impact of SF on immune and inflammatory parameters such as arthritis severity scores, anti-borrelia antibody production, and bacterial clearance was measured. We also determined the effect of SF on arthritis resolution in C3H mice deficient in leukotriene (LT) B4 signaling (BLT1/2-/-) who display delayed Lyme arthritis resolution. RESULTS: SF had no significant impact on Lyme arthritis development or inflammatory parameters regardless of whether SF treatment began 1 week prior to or congruent with infection. However, initiation of SF at the peak of arthritis resulted in a significant delay in arthritis resolution as measured by joint edema, arthritis severity scores, and decreased bacterial clearance from the joint. This was accompanied by significant changes in joint cytokine transcription levels (e.g., increased TNFα and decreased IL-4). SF has no significant impact on Lyme arthritis resolution in the BLT1/2-/- mice. CONCLUSIONS: Poor sleep, especially near the peak of arthritis inflammation, may delay initiation of resolution programs possibly through altering cytokine production and host immune responses, leading to defects in spirochete clearance and prolonged disease.


Assuntos
Artrite , Doença de Lyme , Humanos , Animais , Camundongos , Privação do Sono , Camundongos Endogâmicos C3H , Doença de Lyme/complicações , Doença de Lyme/microbiologia , Inflamação , Citocinas
3.
Am J Respir Crit Care Med ; 209(8): 1001-1012, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113165

RESUMO

Rationale: Obstructive sleep apnea (OSA) is a highly prevalent condition that is associated with accelerated biological aging and multiple end-organ morbidities. Current treatments, such as continuous positive airway pressure (CPAP), have shown limited cognitive, metabolic, and cardiovascular beneficial outcomes despite adherence. Thus, adjunct therapies aiming to reduce OSA burden, such as senolytics, could improve OSA outcomes.Objectives: To assess if targeting senescence in addition to partial normoxia mimicking "good" CPAP adherence can improve physiological outcomes in mice exposed to chronic intermittent hypoxia.Methods: We compared the effects of 6 weeks of therapy with either partial normoxic recovery alone or combined with the senolytic navitoclax after 16 weeks of intermittent hypoxia exposures, a hallmark of OSA, on multiphenotypic cardiometabolic and neurocognitive parameters.Measurements and Main Results: Our findings indicate that only when combined with navitoclax, partial normoxic recovery significantly improved sleepiness (sleep in the dark phase: 34% ± 4% vs. 26% ± 3%; P < 0.01), cognition (preference score: 51% ± 19% vs. 70% ± 11%; P = 0.048), coronary artery function (response to acetylcholine [vasodilation]: 56% ± 13% vs. 72% ± 10%; P < 0.001), glucose, and lipid metabolism and reduced intestinal permeability and senescence in multiple organs.Conclusions: These findings indicate that the reversibility of end-organ morbidities induced by OSA is not only contingent on restoration of normal oxygenation patterns but can be further enhanced by targeting other OSA-mediated detrimental cellular processes, such as accelerated senescence.


Assuntos
Compostos de Anilina , Senoterapia , Apneia Obstrutiva do Sono , Sulfonamidas , Animais , Camundongos , Modelos Animais de Doenças , Insuficiência de Múltiplos Órgãos , Hipóxia/complicações , Pressão Positiva Contínua nas Vias Aéreas
4.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003263

RESUMO

Obstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion people globally and increasing the risk of multi-organ morbidity and overall mortality. However, the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance intercellular communication, and contribute toward homeostasis under physiological conditions. A multi-omics integrative assessment of plasma-derived exosomes from adult OSA patients prior to and after 1-year adherent CPAP treatment is lacking. We conducted multi-omic integrative assessments of plasma-derived exosomes from adult OSA patients prior to and following 1-year adherent CPAP treatment to identify potential specific disease candidates. Fasting morning plasma exosomes isolated from 12 adult patients with polysomnographically-diagnosed OSA were analyzed before and after 12 months of adherent CPAP therapy (mean ≥ 6 h/night) (OSAT). Exosomes were characterized by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. Endothelial cell barrier integrity, wound healing, and tube formation were also performed. Multi-omics analysis for exosome cargos was integrated. Exosomes derived from OSAT improved endothelial permeability and dysfunction as well as significant improvement in tube formation compared with OSA. Multi-omic approaches for OSA circulating exosomes included lipidomic, proteomic, and small RNA (miRNAs) assessments. We found 30 differentially expressed proteins (DEPs), 72 lipids (DELs), and 13 miRNAs (DEMs). We found that the cholesterol metabolism (has04979) pathway is associated with lipid classes in OSA patients. Among the 12 subjects of OSA and OSAT, seven subjects had complete comprehensive exosome cargo information including lipids, proteins, and miRNAs. Multi-omic approaches identify potential signature biomarkers in plasma exosomes that are responsive to adherent OSA treatment. These differentially expressed molecules may also play a mechanistic role in OSA-induced morbidities and their reversibility. Our data suggest that a multi-omic integrative approach might be useful in understanding how exosomes function, their origin, and their potential clinical relevance, all of which merit future exploration in the context of relevant phenotypic variance. Developing an integrated molecular classification should lead to improved diagnostic classification, risk stratification, and patient management of OSA by assigning molecular disease-specific therapies.


Assuntos
Exossomos , MicroRNAs , Apneia Obstrutiva do Sono , Adulto , Humanos , Exossomos/metabolismo , Multiômica , Proteômica , Apneia Obstrutiva do Sono/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lipídeos
5.
Eur Respir J ; 61(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028255

RESUMO

BACKGROUND: Obstructive sleep apnoea (OSA) is a chronic prevalent condition characterised by intermittent hypoxia (IH), and is associated with endothelial dysfunction and coronary artery disease (CAD). OSA can induce major changes in gut microbiome diversity and composition, which in turn may induce the emergence of OSA-associated morbidities. However, the causal effects of IH-induced gut microbiome changes on the vasculature remain unexplored. Our objective was to assess if vascular dysfunction induced by IH is mediated through gut microbiome changes. METHODS: Faecal microbiota transplantation (FMT) was conducted on C57BL/6J naïve mice for 6 weeks to receive either IH or room air (RA) faecal slurry with or without probiotics (VSL#3). In addition to 16S rRNA amplicon sequencing of their gut microbiome, FMT recipients underwent arterial blood pressure and coronary artery and aorta function testing, and their trimethylamine N-oxide (TMAO) and plasma acetate levels were determined. Finally, C57BL/6J mice were exposed to IH, IH treated with VSL#3 or RA for 6 weeks, and arterial blood pressure and coronary artery function assessed. RESULTS: Gut microbiome taxonomic profiles correctly segregated IH from RA in FMT mice and the normalising effect of probiotics emerged. Furthermore, IH-FMT mice exhibited increased arterial blood pressure and TMAO levels, and impairments in aortic and coronary artery function (p<0.05) that were abrogated by probiotic administration. Lastly, treatment with VSL#3 under IH conditions did not attenuate elevations in arterial blood pressure or CAD. CONCLUSIONS: Gut microbiome alterations induced by chronic IH underlie, at least partially, the typical cardiovascular disturbances of sleep apnoea and can be mitigated by concurrent administration of probiotics.


Assuntos
Doença da Artéria Coronariana , Microbioma Gastrointestinal , Probióticos , Apneia Obstrutiva do Sono , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Modelos Animais de Doenças , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/terapia , Hipóxia , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/complicações
6.
Neurobiol Sleep Circadian Rhythms ; 13: 100084, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36254342

RESUMO

Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition characterized by chronic intermittent hypoxia (IH) and sleep fragmentation (SF), and can lead to a vast array of end-organ morbidities, particularly affecting cardiovascular, metabolic and neurobehavioral functioning. OSA can induce cognitive and behavioral and mood deficits. Male C57Bl/6J 8-week-old mice were housed in custom-designed cages with a silent motorized mechanical sweeper traversing the cage floor at 2-min intervals (SF) during daylight for four weeks. Sleep control (SC) consisted of keeping sweeper immobile. IH consisted of cycling FiO2 21% 90 seconds-6.3% 90s or room air (RA; FiO2 21%) for sixteen weeks and combined SF-IH was conducted for nine weeks. Open field novel object recognition (NOR) testing, elevated-plus maze test (EPMT), and forced swimming test (FST) were performed. SF induced cognitive NOR performance impairments in mice along with reduced anxiety behaviors while IH induced deficits in NOR performance, but increased anxiety behaviors. SF-IH induced impaired performance in NOR test of similar magnitude to IH or SF alone. Combined SF-IH exposures did not affect anxiety behaviors. Thus, both SF an IH altered cognitive function while imposing opposite effects on anxiety behaviors. SF-IH did not magnify the detrimental effects of isolated SF or IH and canceled out the effects on anxiety. Based on these findings, the underlying pathophysiologic processes underlying IH and SF adverse effects on cognitive function appear to differ, while those affecting anxiety counteract each other.

8.
Sleep ; 45(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661901

RESUMO

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) that is implicated in an increased risk of cardiovascular disease (i.e., coronary heart disease, CHD) and associated with increased overall and cardiac-specific mortality. Accordingly, we tested the hypothesis that experimental IH progressively impairs coronary vascular function and in vivo coronary flow reserve. METHODS: Male C57BL/6J mice (8-week-old) were exposed to IH (FiO2 21% 90 s-6% 90 s) or room air (RA; 21%) 12 h/day during the light cycle for 2, 6, 16, and 28 weeks. Coronary artery flow velocity reserve (CFVR) was measured at each time point using a Doppler system. After euthanasia, coronary arteries were micro-dissected and mounted on wire myograph to assess reactivity to acetylcholine (ACh) and sodium nitroprusside (SNP). RESULTS: Endothelium-dependent coronary relaxation to ACh was preserved after 2 weeks of IH (80.6 ± 7.8%) compared to RA (87.8 ± 7.8%, p = 0.23), but was significantly impaired after 6 weeks of IH (58.7 ± 16.2%, p = 0.02). Compared to ACh responses at 6 weeks, endothelial dysfunction was more pronounced in mice exposed to 16 weeks (48.2 ± 5.3%) but did not worsen following 28 weeks of IH (44.8 ± 11.6%). A 2-week normoxic recovery after a 6-week IH exposure reversed the ACh abnormalities. CFVR was significantly reduced after 6 (p = 0.0006) and 28 weeks (p < 0.0001) of IH when compared to controls. CONCLUSION: Chronic IH emulating the hypoxia-re-oxygenation cycles of moderate-to-severe OSA promotes coronary artery endothelial dysfunction and CFVR reductions in mice, which progressively worsen until reaching asymptote between 16 and 28 weeks. Normoxic recovery after 6 weeks exposure reverses the vascular abnormalities.


Assuntos
Vasos Coronários , Apneia Obstrutiva do Sono , Acetilcolina , Animais , Modelos Animais de Doenças , Hipóxia/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Apneia Obstrutiva do Sono/complicações
9.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638272

RESUMO

Obstructive sleep apnea (OSA) is associated with increased cutaneous melanoma incidence and adverse outcomes. Exosomes are secreted by most cells, and play a role in OSA-associated tumor progression and metastasis. We aimed to study the effects of plasma exosomes from OSA patients before and after adherent treatment with continuous positive airway pressure (CPAP) on melanoma cells lines, and also to identify exosomal miRNAs from melanoma cells exposed to intermittent hypoxia (IH) or normoxia. Plasma-derived exosomes were isolated from moderate-to-severe OSA patients before (V1) and after (V2) adherent CPAP treatment for one year. Exosomes were co-incubated with three3 different melanoma cell lines (CRL 1424; CRL 1619; CRL 1675) that are characterized by genotypes involving different mutations in BRAF, STK11, CDKN2A, and PTEN genes to assess the effect of exosomes on cell proliferation and migration, as well as on pAMK activity in the presence or absence of a chemical activator. Subsequently, CRL-1424 and CRL-1675 cells were exposed to intermittent hypoxia (IH) and normoxia, and exosomal miRNAs were identified followed by GO and KEG pathways and gene networks. The exosomes from these IH-exposed melanoma cells were also administered to THP1 macrophages to examine changes in M1 and M2 polarity markers. Plasma exosomes from V1 increased CRL-1424 melanoma cell proliferation and migration compared to V2, but not the other two cell lines. Exposure to CRL-1424 exosomes reduced pAMPK/tAMPK in V1 compared to V2, and treatment with AMPK activator reversed the effects. Unique exosomal miRNAs profiles were identified for CRL-1424 and CRL-1675 in IH compared to normoxia, with six miRNAs being regulated and several KEGG pathways were identified. Two M1 markers (CXCL10 and IL6) were significantly increased in monocytes when treated with exosomes from IH-exposed CRL-1424 and CRL-1625 cells. Our findings suggest that exosomes from untreated OSA patients increase CRL-1424 melanoma malignant properties, an effect that is not observed in two other melanoma cell lines. Exosomal cargo from CRL-1424 cells showed a unique miRNA signature compared to CRL-1675 cells after IH exposures, suggesting that melanoma cells are differentially susceptible to IH, even if they retain similar effects on immune cell polarity. It is postulated that mutations in STK-11 gene encoding for the serine/threonine kinase family that acts as a tumor suppressor may underlie susceptibility to IH-induced metabolic dysfunction, as illustrated by CRL-1424 cells.

10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638954

RESUMO

Monocarboxylate transporter 2 (MCT2) is a major high-affinity pyruvate transporter encoded by the SLC16A7 gene, and is associated with glucose metabolism and cancer. Changes in the gut microbiota and host immune system are associated with many diseases, including cancer. Using conditionally expressed MCT2 in mice and the TC1 lung carcinoma model, we examined the effects of MCT2 on lung cancer tumor growth and local invasion, while also evaluating potential effects on fecal microbiome, plasma metabolome, and bulk RNA-sequencing of tumor macrophages. Conditional MCT2 mice were generated in our laboratory using MCT2loxP mouse intercrossed with mCre-Tg mouse to generate MCT2loxP/loxP; Cre+ mouse (MCT2 KO). Male MCT2 KO mice (8 weeks old) were treated with tamoxifen (0.18 mg/g BW) KO or vehicle (CO), and then injected with mouse lung carcinoma TC1 cells (10 × 105/mouse) in the left flank. Body weight, tumor size and weight, and local tumor invasion were assessed. Fecal DNA samples were extracted using PowerFecal kits and bacterial 16S rRNA amplicons were also performed. Fecal and plasma samples were used for GC-MS Polar, as well as non-targeted UHPLC-MS/MS, and tumor-associated macrophages (TAMs) were subjected to bulk RNAseq. Tamoxifen-treated MCT2 KO mice showed significantly higher tumor weight and size, as well as evidence of local invasion beyond the capsule compared with the controls. PCoA and hierarchical clustering analyses of the fecal and plasma metabolomics, as well as microbiota, revealed a distinct separation between the two groups. KO TAMs showed distinct metabolic pathways including the Acetyl-coA metabolic process, activation of immune response, b-cell activation and differentiation, cAMP-mediated signaling, glucose and glutamate processes, and T-cell differentiation and response to oxidative stress. Multi-Omic approaches reveal a substantial role for MCT2 in the host response to TC1 lung carcinoma that may involve alterations in the gut and systemic metabolome, along with TAM-related metabolic pathway. These findings provide initial opportunities for potential delineation of oncometabolic immunomodulatory therapeutic approaches.


Assuntos
Carcinogênese/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Carga Tumoral/genética , Animais , Antineoplásicos Hormonais/uso terapêutico , Carcinogênese/genética , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Metaboloma/genética , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Invasividade Neoplásica/genética , RNA Ribossômico 16S , RNA-Seq , Tamoxifeno/uso terapêutico , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
11.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070558

RESUMO

Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with cardiovascular and metabolic dysfunction. However, the mechanisms underlying these morbidities remain poorly delineated. Extracellular vesicles (EVs) mediate intercellular communications, play pivotal roles in a multitude of physiological and pathological processes, and could mediate IH-induced cellular effects. Here, the effects of IH on human primary cells and the release of EVs were examined. Microvascular endothelial cells (HMVEC-d), THP1 monocytes, THP1 macrophages M0, THP1 macrophages M1, THP1 macrophages M2, pre-adipocytes, and differentiated adipocytes (HAd) were exposed to either room air (RA) or IH for 24 h. Secreted EVs were isolated and characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. The effects of each of the cell-derived EVs on endothelial cell (EC) monolayer barrier integrity, on naïve THP1 macrophage polarity, and on adipocyte insulin sensitivity were also evaluated. IH did not alter EVs cell quantal release, but IH-EVs derived from HMVEC-d (p < 0.01), THP1 M0 (p < 0.01) and HAd (p < 0.05) significantly disrupted HMVEC-d monolayer integrity, particularly after H2O2 pre-conditioning. IH-EVs from HMVEC-d and THP1 M0 elicited M2-polarity changes did not alter insulin sensitivity responses. IH induces cell-selective changes in EVs cargo, which primarily seem to target the emergence of endothelial dysfunction. Thus, changes in EVs cargo from selected cell sources in vivo may play causal roles in some of the adverse outcomes associated with OSA.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Células Endoteliais/patologia , Vesículas Extracelulares/patologia , Humanos , Hipóxia/patologia , Apneia Obstrutiva do Sono/patologia , Células THP-1
12.
Epigenomics ; 13(10): 751-765, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33929266

RESUMO

Aim: Late-gestational sleep fragmentation (LG-SF) and intermittent hypoxia (LG-IH), two hallmarks of obstructive sleep apnea, lead to metabolic dysfunction in the offspring. We investigated specific biological processes that are epigenetically regulated by LG-SF and LG-IH. Materials & methods: We analyzed DNA methylation profiles in offspring visceral white adipose tissues by MeDIP-chip followed by pathway analysis. Results: We detected 1187 differentially methylated loci (p < 0.01) between LG-SF and LG-IH. Epigenetically regulated genes in LG-SF offspring were associated with lipid and glucose metabolism, whereas those in LG-IH were related to inflammatory signaling and cell proliferation. Conclusion: While LG-SF and LG-IH will result in equivalent phenotypic alterations in offspring, each paradigm appears to operate through epigenetic regulation of different biological processes.


Assuntos
Hipóxia/genética , Doenças Metabólicas/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Síndromes da Apneia do Sono/genética , Animais , Metilação de DNA , Epigênese Genética , Epigenômica , Feminino , Gordura Intra-Abdominal/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/genética , Fenótipo , Gravidez
13.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919065

RESUMO

Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).


Assuntos
Eritrócitos/patologia , Vesículas Extracelulares/patologia , Doenças Metabólicas/patologia , Apneia Obstrutiva do Sono/complicações , Humanos , Doenças Metabólicas/etiologia
14.
EBioMedicine ; 64: 103208, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33485839

RESUMO

BACKGROUND: Gut microbiota (GM) contribute to obesity and insulin resistance (IR). Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), promotes IR and alters GM. Since circulating exosomes are implicated in IR, we examined the effects of IH and physical activity (PA) in mice on GM, colonic epithelium permeability, systemic IR, and plasma exosome cargo, and exosome effects on visceral white adipose tissues (vWAT) IR. METHODS: C57BL/6 mice were exposed to IH or room air (RA) for 6 weeks with and without PA (n = 12/group), and GM and systemic IR changes were assessed, as well as the effects of plasma exosomes on naïve adipocyte insulin sensitivity. Fecal microbiota transfers (FMT) were performed in naïve mice (n = 5/group), followed by fecal 16S rRNA sequencing, and systemic IR and exosome-induced effects on adipocyte insulin sensitivity were evaluated. FINDINGS: Principal coordinate analysis (PCoA) ordinates revealed B-diversity among IH and FMT recipients that accounted for 64% principal component 1 (PC1) and 12.5% (PC2) of total variance. Dominant microbiota families and genera in IH-exposed and FMT-treated were preserved, and IH-exposed GM and IH-FMT induced increased gut permeability. Plasma exosomes from IH-exposed and IH-FMT mice decreased pAKT/AKT responses to exogenous insulin in adipocytes vs. IH+PA or RA FMT-treated mice (p = 0.001). INTERPRETATION: IH exposures mimicking OSA induce changes in GM, increase gut permeability, and alter plasma exosome cargo, the latter inducing adipocyte dysfunction (increased IR). Furthermore, these alterations improved with PA. Thus, IH leads to perturbations of a singular GM-circulating exosome pathway that disrupts adipocyte homeostasis resulting in metabolic dysfunction, as reflected by IR. FUNDING: This study was supported by grants from the National Institutes of Health grants HL130984 and HL140548 and University of Missouri Tier 2 grant. The study has not received any funding or grants from pharmaceutical or other industrial corporations.


Assuntos
Biomarcadores/sangue , Exossomos/metabolismo , Microbioma Gastrointestinal , Hipóxia/metabolismo , Resistência à Insulina , Condicionamento Físico Animal , Animais , Peso Corporal , Linhagem Celular , Modelos Animais de Doenças , Insulina/metabolismo , Metaboloma , Metagenoma , Metagenômica/métodos , Camundongos , Apneia Obstrutiva do Sono
15.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899117

RESUMO

Night shift work increases risk of metabolic disorders, particularly obesity and insulin resistance. While the underlying mechanisms are unknown, evidence points to misalignment of peripheral oscillators causing metabolic disturbances. A pathway conveying such misalignment may involve exosome-based intercellular communication. Fourteen volunteers were assigned to a simulated day shift (DS) or night shift (NS) condition. After 3 days on the simulated shift schedule, blood samples were collected during a 24-h constant routine protocol. Exosomes were isolated from the plasma samples from each of the blood draws. Exosomes were added to naïve differentiated adipocytes, and insulin-induced pAkt/Akt expression changes were assessed. ChIP-Seq analyses for BMAL1 protein, mRNA microarrays and exosomal miRNA arrays combined with bioinformatics and functional effects of agomirs and antagomirs targeting miRNAs in NS and DS exosomal cargo were examined. Human adipocytes treated with exosomes from the NS condition showed altered Akt phosphorylation responses to insulin in comparison to those treated with exosomes from the DS condition. BMAL1 ChIP-Seq of exosome-treated adipocytes showed 42,037 binding sites in the DS condition and 5538 sites in the NS condition, with a large proportion of BMAL1 targets including genes encoding for metabolic regulators. A significant and restricted miRNA exosomal signature emerged after exposure to the NS condition. Among the exosomal miRNAs regulated differentially after 3 days of simulated NS versus DS, proof-of-concept validation of circadian misalignment signaling was demonstrated with hsa-mir-3614-5p. Exosomes from the NS condition markedly altered expression of key genes related to circadian rhythm in several cultured cell types, including adipocytes, myocytes, and hepatocytes, along with significant changes in 29 genes and downstream gene network interactions. Our results indicate that a simulated NS schedule leads to changes in exosomal cargo in the circulation. These changes promote reduction of insulin sensitivity of adipocytes in vitro and alter the expression of core clock genes in peripheral tissues. Circulating exosomal miRNAs may play an important role in metabolic dysfunction in NS workers by serving as messengers of circadian misalignment to peripheral tissues.


Assuntos
Biomarcadores/metabolismo , Ritmo Circadiano/fisiologia , MicroRNA Circulante/análise , Exossomos/genética , Regulação da Expressão Gênica , Resistência à Insulina , Adipócitos/citologia , Adipócitos/metabolismo , Adulto , Células Cultivadas , MicroRNA Circulante/metabolismo , Feminino , Humanos , Masculino , RNA Mensageiro , Transdução de Sinais
16.
Exp Neurol ; 334: 113439, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835671

RESUMO

Obstructive sleep apnea (OSA) is a chronic prevalent condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). Evidence suggests that OSA can alter the gut microbiome (GM) diversity and composition that may then promote the occurrence of some of the OSA-associated morbidities. However, it is unclear whether perturbations in the GM caused by IH can elicit sleep disturbances that underlie the increased sleep propensity that occurs in IH-exposed mice. To evaluate this issue, we exposed C57Bl/6 J mice to IH or room air (RA) for 6 weeks, and fecal matter was collected and frozen. C57Bl/6 J naïve mice were then randomly assigned to a fecal microbiota transfer (FMT) protocol for 3 weeks with either IH or RA fecal slur, and their GM was then analyzed using 16 s rRNA sequencing. In addition, FMT recipients underwent sleep recordings using piezoelectric approaches for 3 consecutive days. As anticipated, FMT-IH and FMT-RA mice showed different taxonomic profiles that corresponded to previous effects of IH on GM. Furthermore, FMT-IH mice exhibited increased sleep duration and the frequency of longer sleep bouts during the dark cycle, suggesting increased sleepiness (p < 0.0001 vs. FMT-RA mice). Thus, alterations of GM diversity induced by IH exposures can elicit sleep disturbances in the absence of concurrent IH, suggesting that sleep disturbances can be mediated, at least in part, by IH-induced alterations in GM.


Assuntos
Transplante de Microbiota Fecal/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Hipóxia/complicações , Hipóxia/fisiopatologia , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Br J Cancer ; 122(5): 715-725, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31929518

RESUMO

BACKGROUND: We investigated the influence of hypoxia on the concentration of mitochondrial and nuclear cell-free DNA (McfDNA and NcfDNA, respectively). METHOD: By an ultra-sensitive quantitative PCR-based assay, McfDNA and NcfDNA were measured in the supernatants of different colorectal cell lines, and in the plasma of C57/Bl6 mice engrafted with TC1 tumour cells, in normoxic or hypoxic conditions. RESULTS: Our data when setting cell culture conditions highlighted the higher stability of McfDNA as compared to NcfDNA and revealed that cancer cells released amounts of nuclear DNA equivalent to the mass of a chromosome over a 6-h duration of incubation. In cell model, hypoxia induced a great increase in NcfDNA and McfDNA concentrations within the first 24 h. After this period, cfDNA total concentrations remained stable in hypoxia consecutive to a decrease of nuclear DNA release, and noteworthy, to a complete inhibition of daily mitochondrial DNA release. In TC1-engrafted mice submitted to intermittent hypoxia, plasma NcfDNA levels are much higher than in mice bred in normoxia, unlike plasma McfDNA concentration that is not impacted by hypoxia. CONCLUSION: This study suggests that hypoxia negatively modulates nuclear and, particularly, mitochondrial DNA releases in long-term hypoxia, and revealed that the underlying mechanisms are differently regulated.


Assuntos
DNA Tumoral Circulante/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , DNA Mitocondrial/metabolismo , Hipóxia Tumoral/fisiologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Neoplasias Colorretais/sangue , DNA Mitocondrial/genética , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383883

RESUMO

Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcriptional pathways underlying these functional perturbations are unknown. Here, we applied single nucleus RNA sequencing (snRNA-seq) coupled with aggregate RNA-seq methods to evaluate the cellular heterogeneity in vWAT following IH exposures mimicking OSA. C57BL/6 male mice were exposed to IH and room air (RA) for 6 weeks, and nuclei from vWAT were isolated and processed for snRNA-seq followed by differential expressed gene (DEGs) analyses by cell type, along with gene ontology and canonical pathways enrichment tests of significance. IH induced significant transcriptional changes compared to RA across 14 different cell types identified in vWAT. We identified cell-specific signature markers, transcriptional networks, metabolic signaling pathways, and cellular subpopulation enrichment in vWAT. Globally, we also identify 298 common regulated genes across multiple cellular types that are associated with metabolic pathways. Deconvolution of cell types in vWAT using global RNA-seq revealed that distinct adipocytes appear to be differentially implicated in key aspects of metabolic dysfunction. Thus, the heterogeneity of vWAT and its response to IH at the cellular level provides important insights into the metabolic morbidity of OSA and may possibly translate into therapeutic targets.


Assuntos
Adipócitos/metabolismo , Perfilação da Expressão Gênica , Hipóxia/metabolismo , Gordura Intra-Abdominal/metabolismo , Transcriptoma , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Anotação de Sequência Molecular , Pequeno RNA não Traduzido , Análise de Célula Única
19.
Sleep ; 43(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31552414

RESUMO

Obstructive sleep apnea (OSA) is associated with increased risk for end-organ morbidities, which can collectively be viewed as accelerated aging. Vascular senescence is an important contributor to end-organ dysfunction. Exosomes are released ubiquitously into the circulation, and transfer their cargo to target cells facilitating physiological and pathological processes. Plasma exosomes from 15 patients with polysomnographically diagnosed OSA at baseline (OSA-T1) after 12 months of adherent continuous positive airway pressure (CPAP) treatment (OSA-T2), 13 untreated OSA patients at 12-month intervals (OSA-NT1, OSA-NT2), and 12 controls (CO1 and CO2) were applied on naïve human microvascular endothelialcells-dermal (HMVEC-d). Expression of several senescence gene markers including p16 (CDKN2A), SIRT1, and SIRT6 and immunostaining for ß-galactosidase activity (x-gal) were performed. Endothelial cells were also exposed to intermittent hypoxia (IH) or normoxia (RA) or treated with hydrogen peroxide (H2O2), stained with x-gal and subjected to qRT-PCR. Exosomes from OSA-T1, OSA-NT1, and OSA-NT2 induced significant increases in x-gal staining compared to OSA-T2, CO1, and CO2 (p-value < 0.01). p16 expression was significantly increased (p < 0.01), while SIRT1 and SIRT6 expression levels were decreased (p < 0.02 and p < 0.009). Endothelial cells exposed to IH or to H2O2 showed significant increases in x-gal staining (p < 0.001) and in senescence gene expression. Circulating exosomes in untreated OSA induce marked and significant increases in senescence of naïve endothelial cells, which are only partially reversible upon long-term adherent CPAP treatment. Furthermore, endothelial cells exposed to IH or H2O2 also elicit similar responses. Thus, OSA either directly or indirectly via exosomes may initiate and exacerbate cellular aging, possibly via oxidative stress-related pathways.


Assuntos
Exossomos , Sirtuínas , Apneia Obstrutiva do Sono , Senescência Celular , Pressão Positiva Contínua nas Vias Aéreas , Células Endoteliais , Humanos , Peróxido de Hidrogênio , Plasma , Apneia Obstrutiva do Sono/terapia
20.
Eur Respir J ; 55(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672757

RESUMO

BACKGROUND: Obstructive sleep apnoea (OSA) increases the risk of an abnormal nondipping 24 h blood pressure profile, an independent risk factor for cardiovascular disease (CVD). We examined differential exosomal microRNA (miRNA) expression in untreated OSA patients with normal dipping blood pressure (NDBP) and reverse dipping blood pressure (RDBP), an extreme form of nondipping, to understand the mechanisms underlying nondipping blood pressure in OSA. METHODS: 46 patients (15 RDBP versus 31 NDBP) matched for OSA severity (respiratory event index 32.6±22.5 versus 32.2±18.1 events·h-1; p=0.9), age (54.8±12.9 versus 49±9.9 years; p=0.09) and body mass index (36.2±6.6 versus 34.4±6.8 kg·m-2; p=0.4) were included. Plasma exosomes were characterised by flow cytometry and functional in vitro reporter assays were conducted on cultured endothelial cells. Exosome miRNA cargo was profiled with microarrays followed by bioinformatics analyses. RESULTS: Exosomes from RDBP patients increased the permeability of endothelial cell tight junctions and adhesion molecule expression. Principal component analyses of miRNA array data showed strict separation and identification of the two groups. A restricted and validated signature of exosomal miRNAs was identified in the RDBP versus NDBP group. Their predicted target genes involved phosphatidylinositol 3-kinase-Akt (p=0.004), Ras (p=3.42E-05), Wnt (p=0.003) and hypoxia inducible factor-1 signalling (p=0.04), inflammatory mediator regulation of transient receptor potential channels (p=0.01), and several cancer-related pathways. CONCLUSIONS: Patients with RDBP have altered miRNA cargoes in circulating exosomes that invoke in vitro endothelial dysfunction. A selected number of circulating exosomal miRNAs play an important role in abnormal circadian regulation of blood pressure and may provide prognostic biomarkers of CVD risk in OSA.


Assuntos
Exossomos , MicroRNAs , Apneia Obstrutiva do Sono , Adulto , Pressão Sanguínea , Células Endoteliais , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA