Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123300, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199483

RESUMO

Seed nano-priming can be used as an advanced technology for enhancing seed germination, plant growth, and crop productivity; however, the potential role of seed nano-priming in ameliorative cadmium (Cd) bio-toxicity under Cd stress has not yet been sufficiently investigated. Therefore, in this study we investigated the beneficial impacts of seed priming with low (L) and high (H) concentrations of nanoparticles including nSiO2 (50/100 mg L-1), nTiO2 (20/60 mg L-1), nZnO (50/100 mg L-1), nFe3O4 (100/200 mg L-1), nCuO (50/100 mg L-1), and nCeO2 (50/100 mg L-1) on lettuce growth and antioxidant enzyme activities aiming to assess their efficacy for enhancing plant growth and reducing Cd phytotoxicity. The results showed a significant increase in plant growth, biomass production, antioxidant enzyme activities, and photosynthetic efficiency in lettuce treated with nano-primed nSiH + Cd (100 mg L-1), nTiH + Cd (60 mg L-1), and nZnL + Cd (50 mg L-1) under Cd stress. Moreover, nano-priming effectively reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in lettuce shoots. Interestingly, nano-primed nSiH + Cd, nTiH + Cd, and nZnL + Cd demonstrated efficient reduction of Cd uptake, less translocation factor of Cd with high tolerance index, ultimately reducing toxicity by stabilizing the root morphology and superior accumulation of critical nutrients (K, Mg, Ca, Fe, and Zn). Thus, this study provides the first evidence of alleviating Cd toxicity in lettuce by using multiple nanoparticles via priming strategy. The findings highlight the potential of nanoparticles (Si, Zn, and Ti) as stress mitigation agents for improved crop growth and yield in Cd contaminated areas, thereby offering a promising and advanced approach for remediation of Cd contaminated environments.


Assuntos
Cádmio , Nanopartículas , Cádmio/toxicidade , Antioxidantes/farmacologia , Lactuca , Sementes , Nanopartículas/toxicidade
2.
ACS Omega ; 8(37): 33794-33801, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744822

RESUMO

In this work, new compositions of Sr0.8Mg0.2(Sn1-xZrx)O3 0.00 ≤ x ≤ 0.06 ceramics are designed and synthesized by the conventional solid-state route. The influence of Zr doping on the phase, microstructural, optical, and dielectric properties is thoroughly investigated. The peaks (0 0 4) and (1 1 0) are observed to shift toward lower 2θ values, due to the variation of the ionic radius between Zr4+ and Sn4+. X-ray diffraction patterns reveal the orthorhombic structure with the space group Pbnm. Scanning electron microscopy images reveal the presence of pores and particles with a high degree of agglomeration. The functional groups and modes of vibration are determined by Fourier transform infrared spectroscopy of the prepared metal oxide samples. The existence of green emission of all the synthesized samples around 554.91 nm is identified by photoluminescence spectroscopy. The dielectric properties of the fabricated samples are measured by using an impedance analyzer. The values of the tangent loss and relative permittivity are found to decrease with increasing frequency.

3.
Environ Sci Pollut Res Int ; 30(44): 99310-99325, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37610540

RESUMO

Nanotechnology has attracted the interest of scientists due to its wide range of application specifically in agriculture. Nanoparticles (NPs) may act as a promising materials to alleviate cadmium (Cd) stress in plants. This study aims to assess the impact of multiple nanoparticles including nSiO2 (50 mg L-1:100 mg L-1), nTiO2 (20 mg L-1:60 mg L-1), nZnO (50 mg L-1:100 mg L-1), nFe3O4 (100 mg L-1:200 mg L-1), nCuO (50 mg L-1:100 mg L-1), and nCeO2 (50 mg L-1:100 mg L-1) in combination with CdCl2 (5 µM) to mitigate Cd toxicity in lettuce through foliar application in hydroponic solution. Current findings indicate that foliar application of nSiL + Cd (50 mg L-1), nZnL + Cd (50 mg L-1), and nTiL + Cd (20 mg L-1) is more effective in improving growth, biomass, root architecture, and elevated photosynthetic efficiency, which might be attributed to the increasing uptake of essential micronutrient (K, Mg, Ca, Fe, Zn) under Cd stress. Similarly, treatment with nanoparticles leads to reduced accumulation of ROS and MDA in lettuce, while enhancing the SOD, POD, CAT, and APX activities. The results showed that nanoparticles have high tolerance against Cd as depicted by the inhibition in Cd accumulation by 3.2-58% and 10-72% in roots as well as edible parts of lettuce, respectively. In addition, Cd alone reduces the morphological traits, antioxidant enzyme activity, and photosynthetic activity, while increasing the ROS, MDA, and Cd accumulation in lettuce. This comprehensive study suggests the role of nanoparticles in reducing Cd toxicity in lettuce, signifying their importance as stress mitigation agents. However, long-term pot, priming, and field trials are needed to identify the optimal nanoparticle for the lettuce under variable environmental conditions.


Assuntos
Nanopartículas , Poluentes do Solo , Antioxidantes/farmacologia , Lactuca , Cádmio/análise , Espécies Reativas de Oxigênio/farmacologia , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA