Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Onco Targets Ther ; 7: 2061-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419143

RESUMO

BACKGROUND: The assessment of an increasing number of molecular markers is becoming a standard requirement from endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) specimens. However, it is unclear how many needle passes should be performed and the amount of lung cancer cells that should be sent for molecular analyses. The objective of this study was to determine if it is feasible to divide the material obtained by EBUS-TBNA to allow for molecular analysis without compromising the accuracy of mediastinal staging. OBJECTIVE: We aimed to determine if dividing EBUS-TBNA specimens has a negative impact on either histopathological diagnosis or molecular analysis. METHODS: EBUS-TBNA was performed in 249 enlarged lymph nodes. Negative or ambiguous histopathological results were confirmed by surgical means and clinical follow-up over 6 months. The tissue obtained by EBUS-TBNA was placed onto a glass slide and divided for histopathological workup and molecular analysis. The number of passes was recorded. Both the accuracy of the mediastinal lymph node staging and the applicability of the sample division for molecular analysis were assessed. RESULTS: Each lymph node was punctured an average of 3.18 times and division of the obtained material for diagnosis and molecular analysis was feasible in all cases. The sensitivity and accuracy of the mediastinal lymph node staging were 96.6% and 97.6%, respectively. A cytokeratin (CK)-19-mRNA concentration-based molecular test was feasible in 74.1% of cases. CONCLUSION: Dividing EBUS-TBNA samples for both histopathological diagnosis and molecular testing is feasible and does not compromise the accuracy of mediastinal staging. This method may be an alternative to taking additional needle passes for molecular analyses.

2.
Neuroscience ; 111(2): 291-302, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11983315

RESUMO

Five different genes encode the muscarinic acetylcholine receptors. The muscarinic receptor subtypes M1, M3, and M5 are typically coupled to activation of the Galpha(q/11)-phosphatidyl inositol pathway, whereas the M2 and M4 subtypes are typically linked to Galpha(i) and adenylyl cyclase inhibition. In order to localize muscarinic receptors in the rat cochlea, we applied polyclonal antibodies for subtypes M1, M2, M3, and M5, and monoclonal antibody for subtype M4 to paraffin sections. In the organ of Corti, outer hair cells exhibited strong immunoreactivity for M3 and weak immunoreactivity for M1. Deiters' cells were strongly immunoreactive to antibodies for the M1 and M2 subtypes, with weak staining observed for M3, and weaker yet for M5. Inner hair cells showed moderate immunoreactivity for the M1 subtype, weaker staining for the M5 subtype, and slight staining for the M3 subtype. Among the spiral ganglion neurons, weak to moderate immunoreactivity was detected for M3 and M5 subtypes and weak staining was observed for the M1 subtype. The efferent fibers of the intraganglionic spiral bundle were positive for M2 and M5. In the lateral wall, weak to moderate staining was detected for M5 in the stria vascularis corresponding in position to the basolateral extensions of marginal cells. Staining for M3 was observed associated with capillaries. Fibrocytes of the spiral ligament exhibited limited but selective subtype immunoreactivity. No immunoreactivity was detected in the cochlea for the M4 subtype. From the present findings we suggest that M3 is the primary muscarinic receptor subtype in outer hair cells mediating a postsynaptic response to the medial olivocochlear cholinergic efferent input. The muscarinic receptor subtypes M1, M3, and M5 appear to subserve the action of cholinergic lateral olivocochlear efferent stimulation on postsynaptic responses in type I afferents. Whether M1, M3, and M5 protein in inner hair cells indicates constitutive or vestigial expression remaining from development is unknown. M2 and M5 muscarinic receptors expressed presynaptically may modulate the efferent signal. Finally, expression by Deiters' cells of several muscarinic subtypes raises the possibility that cholinergic efferents couple to these non-sensory cells through muscarinic receptors.


Assuntos
Cóclea/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Encéfalo/metabolismo , Nervo Coclear/metabolismo , Imuno-Histoquímica , Órgão Espiral/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Ratos Endogâmicos ACI , Gânglio Espiral da Cóclea/metabolismo , Estria Vascular/metabolismo , Distribuição Tecidual
3.
Phys Rev C Nucl Phys ; 32(1): 318-319, 1985 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9952834
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA