Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19408, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809501

RESUMO

Construction sites remain highly perilous work environments globally, exposing employees to numerous hazards that can result in severe injuries or fatalities. To resolve this several solutions based on quantitative approaches have been developed. However the wide adoption of preexisting solutions is hindered by lack of accuracy. To this aim the development of an efficient fuzzy inference system has become a de-facto necessity. In this paper, we propose an edge inference framework based on multi-layered fuzzy logic for safety of construction workers. The proposed system employs an edge computing-based framework where IoT devices collect, store, and manage data to offer safety services. Multi-layer fuzzy logic is applied to infer the worker safety index based on rules that consist of construction environment factors. The multi-layer fuzzy logic is fed with weather, building and worker data collected from IoT nodes as inputs. The safety risk assessment process involves analyzing various factors. Weather information, such as temperature, humidity, and rainfall data, is considered to assess the risk to safety. The condition of the building is evaluated by analyzing load, strain, and inclination data. Additionally, the safety risk to workers is analyzed by taking into account their heart rate and location information. The initial layer's outputs are utilized as inputs for the subsequent layer, where an integrated safety index is inferred. Ultimately, the safety index is generated as the final outcome. The system's results are conveyed through warnings and an error measurement on a safety scale ranging from 1 to 10. Furthermore, web service is developed to allow the construction management to check the worker safety condition of the construction site in real-time, while also monitoring the operational status of the IoT devices, allowing for the early detection of sensor malfunction and the subsequent guarantee of worker safety. Extensive evaluations conducted to test the performance of the developed framework verify its efficiency to provide improved risk assessment, real-time monitoring, and proactive safety actions, encouraging a safer and more productive work environment.

2.
ACS Omega ; 8(12): 10806-10821, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008158

RESUMO

Drilling boreholes for the exploration of groundwater incurs high cost with potential risk of failures. However, borehole drilling should only be done in regions with a high probability of faster and easier access to water-bearing strata, so that groundwater resources can be effectively managed. However, regional strati-graphic uncertainties drive the decision of the optimal drilling location search. Unfortunately, due to the unavailability of a robust solution, most contemporary solutions rely on physical testing methods that are resource intensive. In this regard, a pilot study is conducted to determine the optimal borehole drilling location using a predictive optimization technique that takes strati-graphic uncertainties into account. The study is conducted in a localized region of the Republic of Korea using a real borehole data set. In this study we proposed an enhanced Firefly optimization algorithm based on an inertia weight approach to find an optimal location. The results of the classification and prediction model serve as an input to the optimization model to implement a well-crafted objective function. For predictive modeling a deep learning based chained multioutput prediction model is developed to predict groundwater-level and drilling depth. For classification of soil color and land-layer a weighted voting ensemble classification model based on Support Vector Machines, Gaussian Naïve Bayes, Random Forest, and Gradient Boosted Machine is developed. For weighted voting, an optimal set of weights is determined using a novel hybrid optimization algorithm. Experimental results validate the effectiveness of the proposed strategy. The proposed classification model achieved an accuracy of 93.45% and 95.34% for soil-color and land-layer, respectively. While the mean absolute error achieved by proposed prediction model for groundwater level and drilling depth is 2.89% and 3.11%, respectively. It is found that the proposed predictive optimization framework can adaptively determine the optimal borehole drilling locations for high strati-graphic uncertainty regions. The findings of the proposed study provide an opportunity to the drilling industry and groundwater boards to achieve sustainable resource management and optimal drilling performance.

3.
Tomography ; 8(4): 1905-1927, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35894026

RESUMO

A brain tumor is the growth of abnormal cells in certain brain tissues with a high mortality rate; therefore, it requires high precision in diagnosis, as a minor human judgment can eventually cause severe consequences. Magnetic Resonance Image (MRI) serves as a non-invasive tool to detect the presence of a tumor. However, Rician noise is inevitably instilled during the image acquisition process, which leads to poor observation and interferes with the treatment. Computer-Aided Diagnosis (CAD) systems can perform early diagnosis of the disease, potentially increasing the chances of survival, and lessening the need for an expert to analyze the MRIs. Convolutional Neural Networks (CNN) have proven to be very effective in tumor detection in brain MRIs. There have been multiple studies dedicated to brain tumor classification; however, these techniques lack the evaluation of the impact of the Rician noise on state-of-the-art deep learning techniques and the consideration of the scaling impact on the performance of the deep learning as the size and location of tumors vary from image to image with irregular shape and boundaries. Moreover, transfer learning-based pre-trained models such as AlexNet and ResNet have been used for brain tumor detection. However, these architectures have many trainable parameters and hence have a high computational cost. This study proposes a two-fold solution: (a) Multi-Scale CNN (MSCNN) architecture to develop a robust classification model for brain tumor diagnosis, and (b) minimizing the impact of Rician noise on the performance of the MSCNN. The proposed model is a multi-class classification solution that classifies MRIs into glioma, meningioma, pituitary, and non-tumor. The core objective is to develop a robust model for enhancing the performance of the existing tumor detection systems in terms of accuracy and efficiency. Furthermore, MRIs are denoised using a Fuzzy Similarity-based Non-Local Means (FSNLM) filter to improve the classification results. Different evaluation metrics are employed, such as accuracy, precision, recall, specificity, and F1-score, to evaluate and compare the performance of the proposed multi-scale CNN and other state-of-the-art techniques, such as AlexNet and ResNet. In addition, trainable and non-trainable parameters of the proposed model and the existing techniques are also compared to evaluate the computational efficiency. The experimental results show that the proposed multi-scale CNN model outperforms AlexNet and ResNet in terms of accuracy and efficiency at a lower computational cost. Based on experimental results, it is found that our proposed MCNN2 achieved accuracy and F1-score of 91.2% and 91%, respectively, which is significantly higher than the existing AlexNet and ResNet techniques. Moreover, our findings suggest that the proposed model is more effective and efficient in facilitating clinical research and practice for MRI classification.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Neoplasias Meníngeas , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA