Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Chemistry ; 30(2): e202302779, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877583

RESUMO

Sulfur is one of the most abundant and economical elements in the p-block family and highly redox active, potentially utilizable as a charge-storing electrode with high theoretical capacities. However, its inherent good solubility in many electrolytes inhibits its accessibility as an electrode material in typical metal-sulfur batteries. In this work, the synthetically designed fluorinated porous polymer, when treated with elemental sulfur through a well-known nucleophilic aromatic substitution mechanism (SN Ar), allows for the covalent integration of polysulfides into a highly conjugated benzimidazole polymer by replacing the fluorine atoms. Chemically robust benzimidazole linkages allow such harsh post-synthetic treatment and facilitate the electronic activation of the anchored polysulfides for redox reactions under applied potential. The electrode amalgamated with sulfurized polymer mitigates the so-called polysulfide shuttle effect in the lithium-sulfur (Li-S) battery and also enables a reversible, more environmentally friendly, and more economical aluminum-sulfur (Al-S) battery that is configured with mostly p-block elements as cathode, anode, and electrolytes. The improved cycling stabilities and reduction of the overpotential in both cases pave the way for future sustainable energy storage solutions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37903405

RESUMO

The rational design and preparation of conductive metal-organic frameworks (MOFs) are alluring and challenging pathways to develop active catalysts toward electrocatalytic glucose oxidation. The hybridization of conductive MOFs with carbon nanotubes (CNTs) in the form of a composite can greatly improve the electrocatalytic performance. Herein, a facile one-step synthetic strategy is utilized to fabricate a Ni3(HHTP)2/CNT (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) composite for nonenzymatic detection of glucose in an alkaline solution. The Ni3(HHTP)2/CNT composite, as an electrochemical glucose sensor material, exhibits superior electrocatalytic activity toward glucose oxidation with a wide detection range of up to 3.9 mM, a low detection limit of 4.1 µM (signal/noise = 3), a fast amperometric response time of <2 s, and a high sensitivity of 4774 µA mM-1 cm-2, surpassing the performance of some recently reported nonenzymatic transition-metal-based glucose sensors. In addition, the composite sensor also shows outstanding selectivity, robust long-term electrochemical stability, favorable anti-interference properties, and good reproducibility. This work displays the effectiveness of enhancing the electrocatalytic performance toward glucose detection by combing conductive MOFs with CNTs, thereby opening up an applicable and encouraging approach for the design of advanced nonenzymatic glucose sensors.

3.
Angew Chem Int Ed Engl ; 62(44): e202310878, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37647152

RESUMO

The catalytic activity of multifunctional, microporous materials is directly linked to the spatial arrangement of their structural building blocks. Despite great achievements in the design and incorporation of isolated catalytically active metal complexes within such materials, a detailed understanding of their atomic-level structure and the local environment of the active species remains a fundamental challenge, especially when these latter are hosted in non-crystalline organic polymers. Here, we show that by combining computational chemistry with pair distribution function analysis, 129 Xe NMR, and Dynamic Nuclear Polarization enhanced NMR spectroscopy, a very accurate description of the molecular structure and confining surroundings of a catalytically active Rh-based organometallic complex incorporated inside the cavity of amorphous bipyridine-based porous polymers is obtained. Small, but significant, differences in the structural properties of the polymers are highlighted depending on their backbone motifs.

4.
Angew Chem Int Ed Engl ; 62(30): e202306091, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37204021

RESUMO

Emerging rechargeable aluminium batteries (RABs) offer a sustainable option for next-generation energy storage technologies with low cost and exemplary safety. However, the development of RABs is restricted by the limited availability of high-performance cathode materials. Herein, we report two polyimide two-dimensional covalent organic frameworks (2D-COFs) cathodes with redox-bipolar capability in RAB. The optimal 2D-COF electrode achieves a high specific capacity of 132 mAh g-1 . Notably, the electrode presents long-term cycling stability (with a negligible ≈0.0007 % capacity decay per cycle), outperforming early reported organic RAB cathodes. 2D-COFs integrate n-type imide and p-type triazine active centres into the periodic porous polymer skeleton. With multiple characterizations, we elucidate the unique Faradaic reaction of the 2D-COF electrode, which involves AlCl2+ and AlCl4 - dual-ions as charge carriers. This work paves the avenue toward novel organic cathodes in RABs.

5.
Nucleic Acids Res ; 51(12): 6246-6263, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144518

RESUMO

The structure of DNA replication forks is preserved by TIMELESS (TIM) in the fork protection complex (FPC) to support seamless fork progression. While the scaffolding role of the FPC to couple the replisome activity is much appreciated, the detailed mechanism whereby inherent replication fork damage is sensed and counteracted during DNA replication remains largely elusive. Here, we implemented an auxin-based degron system that rapidly triggers inducible proteolysis of TIM as a source of endogenous DNA replication stress and replisome dysfunction to dissect the signaling events that unfold at stalled forks. We demonstrate that acute TIM degradation activates the ATR-CHK1 checkpoint, whose inhibition culminates in replication catastrophe by single-stranded DNA accumulation and RPA exhaustion. Mechanistically, unrestrained replisome uncoupling, excessive origin firing, and aberrant reversed fork processing account for the synergistic fork instability. Simultaneous TIM loss and ATR inactivation triggers DNA-PK-dependent CHK1 activation, which is unexpectedly necessary for promoting fork breakage by MRE11 and catastrophic cell death. We propose that acute replisome dysfunction results in a hyper-dependency on ATR to activate local and global fork stabilization mechanisms to counteract irreversible fork collapse. Our study identifies TIM as a point of replication vulnerability in cancer that can be exploited with ATR inhibitors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Replicação do DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas Nucleares/metabolismo , Humanos
6.
Adv Mater ; 35(16): e2210151, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719245

RESUMO

The chelating ability of quinoxaline cores and the redox activity of organosulfide bridges in layered covalent organic frameworks (COFs) offer dual active sites for reversible lithium (Li)-storage. The designed COFs combining these properties feature disulfide and polysulfide-bridged networks showcasing an intriguing Li-storage mechanism, which can be considered as a lithium-organosulfide (Li-OrS) battery. The experimental-computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core. Meanwhile, bilateral covalent bonding of sulfide bridges to the quinoxaline core enables a redox-mediated reversible cleavage of the sulfursulfur bond and the formation of covalently anchored lithium-sulfide chains or clusters during Li-interactions, accompanied by a marked reduction of Li-polysulfide (Li-PS) dissolution into the electrolyte, a frequent drawback of lithium-sulfur (Li-S) batteries. The electrochemical behavior of model compounds mimicking the sulfide linkages of the COFs and operando Raman studies on the framework structure unravels the reversibility of the profound Li-ion-organosulfide interactions. Thus, integrating redox-active organic-framework materials with covalently anchored sulfides enables a stable Li-OrS battery mechanism which shows benefits over a typical Li-S battery.

7.
Angew Chem Int Ed Engl ; 61(49): e202209762, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36161682

RESUMO

Vinylene-linked two-dimensional covalent organic frameworks (V-2D-COFs) have shown great promise in electronics and optoelectronics. However, only a few reactions for V-2D-COFs have been developed hitherto. Besides the kinetically low reversibility of C=C bond formation, another underlying issue facing the synthesis of V-2D-COFs is the attainment of high (E)-alkene selectivity to ensure the appropriate symmetry of 2D frameworks. Here, we tailor the E/Z selectivity of the Wittig reaction by employing a proper catalyst (i.e., Cs2 CO3 ) to obtain more stable intermediates and elevating the temperature across the reaction barrier. Subsequently, the Wittig reaction is innovatively utilized for the synthesis of four crystalline V-2D-COFs by combining aldehydes and ylides. Importantly, the efficient conjugation and decent crystallinity of the resultant V-2D-COFs are demonstrated by their high charge carrier mobilities over 10 cm2  V-1 s-1 , as revealed by non-contact terahertz (THz) spectroscopy.

8.
J Biol Chem ; 298(8): 102268, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35850305

RESUMO

Elevated DNA replication stress causes instability of the DNA replication fork and increased DNA mutations, which underlies tumorigenesis. The DNA replication stress regulator silencing-defective 2 (SDE2) is known to bind to TIMELESS (TIM), a protein of the fork protection complex, and enhances its stability, thereby supporting replisome activity at DNA replication forks. However, the DNA-binding activity of SDE2 is not well defined. Here, we structurally and functionally characterize a new conserved DNA-binding motif related to the SAP (SAF-A/B, Acinus, PIAS) domain in human SDE2 and establish its preference for ssDNA. Our NMR solution structure of the SDE2SAP domain reveals a helix-extended loop-helix core with the helices aligned parallel to each other, consistent with known canonical SAP folds. Notably, we have shown that the DNA interaction of this SAP domain extends beyond the core SAP domain and is augmented by two lysine residues in the C-terminal tail, which is uniquely positioned adjacent to the SAP motif and conserved in the pre-mRNA splicing factor SF3A3. Furthermore, we found that mutation in the SAP domain and extended C terminus not only disrupts ssDNA binding but also impairs TIM localization at replication forks, thus inhibiting efficient fork progression. Taken together, our results establish SDE2SAP as an essential element for SDE2 to exert its role in preserving replication fork integrity via fork protection complex regulation and highlight the structural diversity of the DNA-protein interactions achieved by a specialized DNA-binding motif.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Domínios Proteicos
9.
J Am Chem Soc ; 144(20): 9101-9112, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543441

RESUMO

Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level.

10.
Chem Commun (Camb) ; 58(28): 4492-4495, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35302127

RESUMO

Alcohol adsorption by metal-organic frameworks (ZIF-8 and ZIF-11) in aqueous solutions is investigated including alcohol mixtures. Solid-state 13C NMR spectroscopy is demonstrated to be well-suited for such liquid-phase adsorption studies at the molecular level. Adsorption-induced immobilization could be visualized. Finally, an unexpected phase transition of ZIF-11 was discovered.

11.
Magn Reson (Gott) ; 2(2): 751-763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905215

RESUMO

Among hyperpolarization techniques, quantum-rotor-induced polarization (QRIP), also known as the Haupt effect, is a peculiar one. It is, on the one hand, rather simple to apply by cooling and heating a sample. On the other hand, only the methyl groups of a few substances seem to allow for the effect, which strongly limits the applicability of QRIP. While it is known that a high tunnel frequency is required, the structural conditions for the effect to occur have not been exhaustively studied yet. Here we report on our efforts to heuristically recognize structural motifs in molecular crystals able to allow to produce QRIP.

12.
J Biol Chem ; 295(40): 13887-13901, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32763975

RESUMO

Fanconi anemia (FA) is a chromosome instability syndrome of children caused by inherited mutations in one of FA genes, which together constitute a DNA interstrand cross-link (ICL) repair, or the FA pathway. Monoubiquitination of Fanconi anemia group D2 protein (FANCD2) by the multisubunit ubiquitin E3 ligase, the FA core complex, is an obligate step in activation of the FA pathway, and its activity needs to be tightly regulated. FAAP20 is a key structural component of the FA core complex, and regulated proteolysis of FAAP20 mediated by prolyl cis-trans isomerization and phosphorylation at a consensus phosphodegron motif is essential for preserving the integrity of the FA core complex, and thus FANCD2 monoubiquitination. However, how ubiquitin-dependent FAAP20 degradation is modulated to fine-tune FA pathway activation remains largely un-known. Here, we present evidence that FAAP20 is acetylated by the acetyltransferase p300/CBP on lysine 152, the key residue that when polyubiquitinated results in the degradation of FAAP20. Acetylation or mutation of the lysine residue stabilizes FAAP20 by preventing its ubiquitination, thereby protecting it from proteasome-dependent FAAP20 degradation. Consequently, disruption of the FAAP20 acetylation pathway impairs FANCD2 activation. Together, our study reveals a competition mechanism between ubiquitination and acetylation of a common lysine residue that controls FAAP20 stability and highlights a complex balancing between different posttranslational modifications as a way to refine the FA pathway signaling required for DNA ICL repair and genome stability.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitinação , Acetilação , Linhagem Celular Tumoral , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética
13.
J Cachexia Sarcopenia Muscle ; 11(5): 1258-1269, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32314543

RESUMO

BACKGROUND: Body composition from computed tomography (CT) scans is associated with cancer outcomes including surgical complications, chemotoxicity, and survival. Most studies manually segment CT scans, but Automatic Body composition Analyser using Computed tomography image Segmentation (ABACS) software automatically segments muscle and adipose tissues to speed analysis. Here, we externally evaluate ABACS in an independent dataset. METHODS: Among patients with non-metastatic colorectal (n = 3102) and breast (n = 2888) cancer diagnosed from 2005 to 2013 at Kaiser Permanente, expert raters annotated tissue areas at the third lumbar vertebra (L3). To compare ABACS segmentation results to manual analysis, we quantified the proportion of pixel-level image overlap using Jaccard scores and agreement between methods using intra-class correlation coefficients for continuous tissue areas. We examined performance overall and among subgroups defined by patient and imaging characteristics. To compare the strength of the mortality associations obtained from ABACS's segmentations to manual analysis, we computed Cox proportional hazards ratios (HRs) and 95% confidence intervals (95% CI) by tertile of tissue area. RESULTS: Mean ± SD age was 63 ± 11 years for colorectal cancer patients and 56 ± 12 for breast cancer patients. There was strong agreement between manual and automatic segmentations overall and within subgroups of age, sex, body mass index, and cancer stage: average Jaccard scores and intra-class correlation coefficients exceeded 90% for all tissues. ABACS underestimated muscle and visceral and subcutaneous adipose tissue areas by 1-2% versus manual analysis: mean differences were small at -2.35, -1.97 and -2.38 cm2 , respectively. ABACS's performance was lowest for the <2% of patients who were underweight or had anatomic abnormalities. ABACS and manual analysis produced similar associations with mortality; comparing the lowest to highest tertile of skeletal muscle from ABACS versus manual analysis, the HRs were 1.23 (95% CI: 1.00-1.52) versus 1.38 (95% CI: 1.11-1.70) for colorectal cancer patients and 1.30 (95% CI: 1.01-1.66) versus 1.29 (95% CI: 1.00-1.65) for breast cancer patients. CONCLUSIONS: In the first study to externally evaluate a commercially available software to assess body composition, automated segmentation of muscle and adipose tissues using ABACS was similar to manual analysis and associated with mortality after non-metastatic cancer. Automated methods will accelerate body composition research and, eventually, facilitate integration of body composition measures into clinical care.


Assuntos
Composição Corporal , Neoplasias da Mama , Neoplasias Colorretais , Tecido Adiposo/diagnóstico por imagem , Idoso , Automação , Neoplasias da Mama/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gordura Subcutânea , Tomografia Computadorizada por Raios X
14.
Solid State Nucl Magn Reson ; 101: 38-43, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31103933

RESUMO

For the first time, 15N NMR data are obtained for a sample of nitric oxide at various temperatures. Spectra have been obtained in the liquid and solid state. In the former, the chemical shift as well as the spin-lattice relaxation time is characterized by the dynamic equilibrium of the dimerization reaction. Only the signal of the (NO)2 dimer is observed, while the paramagnetic NO has strong influences on the NMR parameter. From T1 relaxation and linewidth analysis a range for the correlation time of the exchange between monomer and dimer is obtained. SQUID measurements corroborate the NMR analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA