Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7902, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570524

RESUMO

The spatial movement of the human population from one region to another and the existence of super-spreaders are the main factors that enhanced the disease incidence. Super-spreaders refer to the individuals having transmitting ability to multiple pathogens. In this article, an epidemic model with spatial and temporal effects is formulated to analyze the impact of some preventing measures of COVID-19. The model is developed using six nonlinear partial differential equations. The infectious individuals are sub-divided into symptomatic, asymptomatic and super-spreader classes. In this study, we focused on the rigorous qualitative analysis of the reaction-diffusion model. The fundamental mathematical properties of the proposed COVID-19 epidemic model such as boundedness, positivity, and invariant region of the problem solution are derived, which ensure the validity of the proposed model. The model equilibria and its stability analysis for both local and global cases have been presented. The normalized sensitivity analysis of the model is carried out in order to observe the crucial factors in the transmission of infection. Furthermore, an efficient numerical scheme is applied to solve the proposed model and detailed simulation are performed. Based on the graphical observation, diffusion in the context of confined public gatherings is observed to significantly inhibit the spread of infection when compared to the absence of diffusion. This is especially important in scenarios where super-spreaders may play a major role in transmission. The impact of some non-pharmaceutical interventions are illustrated graphically with and without diffusion. We believe that the present investigation will be beneficial in understanding the complex dynamics and control of COVID-19 under various non-pharmaceutical interventions.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Dinâmica não Linear , Simulação por Computador , Difusão
2.
Eur Phys J Plus ; 137(2): 198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136704

RESUMO

[This corrects the article DOI: 10.1140/epjp/s13360-022-02365-8.].

3.
Eur Phys J Plus ; 137(1): 156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35096497

RESUMO

The purpose of this research is to explore the complex dynamics and impact of vaccination in controlling COVID-19 outbreak. We formulate the classical epidemic compartmental model by introducing vaccination class. Initially, the proposed mathematical model is analyzed qualitatively. The basic reproductive number is computed and its numerical value is estimated using actual reported data of COVID-19 for Pakistan. The sensitivity analysis is performed to analyze the contribution of model embedded parameters in transmission of the disease. Further, we compute the equilibrium points and discussed its local and global stability. In order to investigate the influence of model key parameters on the transmission and controlling of the disease, we perform numerical simulations describing the impact of various scenarios of vaccine efficacy rate and other controlling measures. Further, on the basis of sensitivity analysis, the proposed model is restructured to obtained optimal control model by introducing time-dependent control variables u 1 ( t ) for isolation, u 2 ( t ) for vaccine efficacy and u 3 ( t ) for treatment enhancement. Using optimal control theory and Pontryagin's maximum principle, the model is optimized and important optimality conditions are derived. In order to explore the impact of various control measures on the disease dynamics, we considered three different scenarios, i.e., single and couple and threefold controlling interventions. Finally, the graphical interpretation of each case is depicted and discussed in detail. The simulation results revealed that although single and couple scenarios can be implemented for the disease minimization but, the effective case to curtail the disease incidence is the threefold scenario which implements all controlling measures at the same time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA