Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25520, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327438

RESUMO

Here, green banana pulp extract (PE) has been used as a bio-reducing agent for the reduction of silver ions to silver nanoparticles (AgNPs). Bio-synthesized AgNPs were characterized by using UV, XRD, FEEM, TEM, and FTIR analysis. The face-centered cubic structures of AgNPs were formed with an average crystallite size of 31.26 nm and an average particle size of 42.97 nm. In this report, the electrical activities of green synthesized AgNPs have been evaluated along with the antibacterial activities. The antibacterial activities of AgNPs were evaluated against two pathogenic bacteria: Escherichia coli (gram-negative) and Staphylococcus epidermidis (gram-positive). AgNPs were added to the electrochemical cell and results demonstrated the improvement of power of the electrochemical cell. Green synthesized AgNPs showed excellent antibacterial activities against both gram-positive and negative bacteria and most importantly the NPs played an important role as an effective catalyst to enhance the electrical performance of bio-electrochemical cells. These significant findings may help in the advancement of nanotechnology in biomedical applications as well as in the creation of cheap and eco-friendly power generation devices.

2.
RSC Adv ; 13(51): 36130-36143, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090076

RESUMO

Here we synthesized Bi2WO6 (BWO) using both solid-state reaction (SBWO) and hydrothermal (HBWO-U and HBWO-S) methods. The orthorhombic Pca21 phase purity in all samples is confirmed from Rietveld refinement of X-ray diffraction data, Raman spectroscopy, and Fourier transform infrared spectroscopy. The HBWO-U and HBWO-S morphology revealed rectangular, spherical, and rod-like features with an average particle size of 55 nm in field emission scanning electron micrographs. A high-resolution transmission electron micrograph showed spherical-shaped particles in the HBWO-U sample with an average diameter of ∼10 nm. The diffuse reflectance-derived indirect electronic band gaps lie within the 2.79-3.23 eV range. The BWO electronic structure is successfully modeled by Hubbard interaction Ud and Up corrected Perdew-Burke-Ernzerhof generalized gradient approximation GGA-PBE+Ud+Up with van der Waals (vdW) force in effect. The optimized (Ud, Up) values are further justified by tuning the Hartree-Fock (HF) exact-exchange mixing parameter αHF from 25% in Heyd-Scuseria-Ernzerhof (HSE06) to 20% in the PBE-HF20% functional. Moreover, no inconsistencies were seen in the GGA-PBE+Ud+Up+vdW simulated crystallographic parameters, and the elastic tensor, phonon, and linear optical properties. Overall, the computationally cheap GGA-PBE+Ud+Up with vdW force may have successfully probed the physical properties of BWO.

3.
Nanotechnology ; 35(9)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029451

RESUMO

An electrical application of green synthesized silver nanoparticles (Ag NPs) by developing a unique bio-electrochemical cell (BEC) has been addressed in the report. Here, garlic extract (GE) has been used as a reducing agent to synthesize Ag NPs, and as a bio-electrolyte solution of BEC. Ag NPs successfully formed into face-centered cubic structures with average crystallite and particle sizes of 8.49 nm and 20.85 nm, respectively, according to characterization techniques such as the UV-vis spectrophotometer, XRD, FTIR, and FESEM. A broad absorption peak at 410 nm in the UV-visible spectra indicated that GE played a vital role as a reducing agent in the transformation of Ag+ions to Ag NPs. After that four types of BEC were developed by varying the concentration of GE, CuSO4. 5H2O, and Ag NPs electrolyte solution. The open circuit voltage and short circuit current of all cells were examined with the time duration. Moreover, different external loads (1 Ω, 2 Ω, 5 Ω, and 6 Ω) were used to investigate the load voltage and load current of BEC. The results demonstrated that the use of Ag NPs on BEC played a significant role in increasing the electrical performance of BEC. The use of GE-mediated Ag NPs integrated the power, capacity, voltage efficiency, and energy efficiency of BEC by decreasing the internal resistance and voltage regulation. These noteworthy results can take a frontier forward to the development of nanotechnology for renewable and low-cost power production applications.


Assuntos
Alho , Nanopartículas Metálicas , Prata/química , Alho/metabolismo , Nanopartículas Metálicas/química , Substâncias Redutoras , Antioxidantes/química , Eletrólitos , Extratos Vegetais/química
4.
RSC Adv ; 13(21): 14291-14305, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180022

RESUMO

Here we present a comprehensive density functional theory (DFT) based ab initio study of copper bismuth oxide CuBi2O4 (CBO) in combination with experimental observations. The CBO samples were prepared following both solid-state reaction (SCBO) and hydrothermal (HCBO) methods. The P4/ncc phase purity of the as-synthesized samples was corroborated by Rietveld refinement of the powdered X-ray diffraction measurements along with Generalized Gradient Approximation of Perdew-Burke-Ernzerhof (GGA-PBE) and the Hubbard interaction U corrected GGA-PBE+U relaxed crystallographic parameters. Scanning and field emission scanning electron micrographs confirmed the particle size of the SCBO and HCBO samples to be ∼250 and ∼60 nm respectively. The GGA-PBE and GGA-PBE+U derived Raman peaks are in better agreement with that of the experimentally observed ones when compared to local density approximation based results. The DFT derived phonon density of states conforms with the absorption bands in Fourier transform infrared spectra. Both structural and dynamic stability criteria of the CBO are confirmed by elastic tensor and density functional perturbation theory-based phonon band structure simulations respectively. The CBO band gap underestimation of GGA-PBE as compared to UV-vis diffuse reflectance derived 1.8 eV was eliminated by tuning the U and the Hartree-Fock exact-exchange mixing parameter αHF in GGA-PBE+U and Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals respectively. The HSE06 with αHF = 14% yields the optimum linear optical properties of CBO in terms of the dielectric function, absorption, and their derivatives as compared to that of GGA-PBE and GGA-PBE+U functionals. Our as-synthesized HCBO shows ∼70% photocatalytic efficiency in degrading methylene blue dye under 3 h optical illumination. This DFT-guided experimental approach to CBO may help to gain a better understanding of its functional properties.

5.
RSC Adv ; 13(8): 5576-5589, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798614

RESUMO

Here we present a detailed ab initio study of two experimentally synthesized bismuth niobate BiNbO4 (BNO) polymorphs within the framework of density functional theory (DFT). We synthesized orthorhombic α-BNO and triclinic ß-BNO using a solid-state reaction technique. The underlying Pnna and P1̄ crystal symmetries along with their respective phase purity have been confirmed from Rietveld refinement of the powdered X-ray diffraction measurements in combination with generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) based DFT simulations. The scanning electron micrographs revealed average grain sizes to be 500 nm and 1 µm for α-BNO and ß-BNO respectively. The energy-dispersive X-ray spectroscopy identified the Bi, Nb, and O with proper stoichiometry. The phase purity of the as-synthesized samples was further confirmed by comparing the local density approximation (LDA) norm-conserving pseudo-potential based DFT-simulated Raman peaks with that of experimentally measured ones. The relevant bond vibrations detected in Fourier transform infrared spectroscopy were matched with GGA-PBE derived phonon density of states simulation for both polymorphs. The structural stability and the charge dynamics of the polymorphs were verified from elastic stress and born charge tensor simulations respectively. The dynamical stability of the α-BNO was confirmed from phonon band structure simulation using density functional perturbation theory with Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. The electronic band gaps of 3.08 and 3.36 eV for α-BNO and ß-BNO measured from UV-Vis diffuse reflectance measurements were matched with the sophisticated HSE06 band structure simulation by adjusting the Hartree-Fock exchange parameter. Both GGA-PBE and HSE06 functional were used to simulate complex dielectric function and its derivatives with the help of Fermi's golden rule to define the optical properties in the linear regime. All these may have provided a rigorous theoretical analysis for the experimentally synthesized α-BNO and ß-BNO polymorphs.

6.
RSC Adv ; 12(24): 15167-15179, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35693236

RESUMO

This study explored the structural, electrical, and magnetic properties of diamagnetic aluminium (Al3+) substituted nickel-zinc-cobalt (Ni-Zn-Co) mixed spinel ferrites, though the research on this area is in the infancy stage. Single-phase cubic spinel structures with the Fd3̄m space group of the synthesized Ni0.4Zn0.35Co0.25Fe(2-x)Al x O4 (0 ≤ x ≤ 0.12) ferrite samples were confirmed by X-ray diffraction (XRD) analysis. The average particle size ranged from 0.67 to 0.39 µm. Selected area electron diffraction (SAED) patterns were indexed according to the space group Fd3m, representing the particle's crystallinity. The optical band gaps ranged from 4.784 eV to 4.766 eV. Frequency-dependent dielectric constants and ac conductivity measurement suggested that the prepared ferrites were highly resistive. Relaxation times were reduced to a low value from 45.45 µs to 1.54 µs with the composition x. The Curie temperatures (T c) were 615-623 K for all samples. Real part permeabilities (µ /) were relatively stable up to an extended frequency range of 106 Hz with relative quality factors (RQF) of around 103. Tuning of the properties indicates that the fabricated ferrites may be promising for high-frequency electronic devices.

7.
RSC Adv ; 12(8): 4656-4671, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425488

RESUMO

This study presents a modification of structure-dependent elastic, thermodynamic, magnetic, transport and magneto-dielectric properties of a Ni-Zn-Co ferrite tailored by Gd3+ substitution at the B-site replacing Fe3+ ions. The synthesized composition of Ni0.7Zn0.2Co0.1Fe2-x Gd x O4 (0 ≤ x ≤ 0.12) crystallized with a single-phase cubic spinel structure that belongs to the Fd3̄m space group. The average particle size decreases due to Gd3+ substitution at Fe3+. Raman and IR spectroscopy studies illustrate phase purity, lattice dynamics with cation disorders and thermodynamic conditions inside the studied samples at room temperature (RT = 300 K). Ferromagnetic to paramagnetic phase transition was observed in all samples where Curie temperature (T C) decreases from 731 to 711 K for Gd3+ substitution in Ni-Zn-Co ferrite. In addition, Gd3+ substitution reinforces to decrease the A-B exchange interaction. Temperature-dependent DC electrical resistivity (ρ DC) and temperature coefficient of resistance (TCR) have been surveyed with the variation of the grain size. The frequency-dependent dielectric properties and electric modulus at RT for all samples were observed from 20 Hz to 100 MHz and the conduction relaxation processes were found to spread over an extensive range of frequencies with the increase in the amount of Gd3+ in the Ni-Zn-Co ferrite. The RLC behavior separates the zone of frequencies ranging from resistive to capacitive regions in all the studied samples. Finally, the matching impedance (Z/η 0) for all samples was evaluated over an extensive range of frequencies for the possible miniaturizing application.

8.
J Mater Sci Mater Electron ; 32(21): 26173-26180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624708

RESUMO

Studies on Mg substituted Zn-Cu ferrites with chemical formula of Zn0.6Cu0.4-xMgxFe2O4 were synthesized by solid-state reaction technique. The structural phase of all the samples is characterized by XRD, show single phased cubic spinel structure. Density of the samples increases with the increase of Mg quantity. Average grain diameter decreases with increasing Mg content. All samples show soft ferromagnetic behavior as confirmed from the M-H hysteresis loop obtained from the VSM analysis. Thesaturation magnetization decreases with increasing Mg quantity. Increasing and decreasing trend of coercivity with the increase of Mg quantityis observed, which led to the slightly hard magnetic phase. The high frequencies create more effective for the ferrite grains of advanced conductivity and minor dielectric constant for all the samples but the AC electrical resistivity and dielectric constant are initiate to be more operational at lower frequencies. The variation of resistivity, dielectric constant with the Mg concentration is completely related to the porosity and bulk density.

9.
RSC Adv ; 9(23): 13254-13262, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35520756

RESUMO

The enormous numbers of applications of TiO2 nanoparticles (NPs) cause concern about their risk to the environment and human health. Consequently, motivated by the necessity of searching for new sources of TiO2 NPs of low cytotoxicity with antibacterial activity, we synthesized TiO2 NPs by a green route using a solution of titanium(iv) isopropoxide as a precursor and an aqueous extract of Artocarpus heterophyllus leaf as a reducing and surface modifying agent. We investigated their structure, shape, size, and magnetic properties, and evaluated their antibiotic application and cytotoxicity. The synthesized TiO2 NPs were applied against two Gram-negative bacteria (E. coli and S. typhimurium) and two Gram-positive bacteria (S. aureus and B. subtilis) to observe their antibacterial activity; and eventually clear zones of inhibition formed by the TiO2 NPs were obtained. Moreover, after exposing the synthesized TiO2 NPs to HeLa cells (carcinoma cells) and Vero cells (normal cells), no toxic effect was found up to a dose of 1000 mg L-1, indicating the safe use of the samples up to at least 1000 mg L-1. However, toxic effects on HeLa cells and Vero cells were observed at doses of 2000 mg L-1 and 3000 mg L-1, respectively. These results indicate the safe use of Artocarpus heterophyllus leaf extract mediated synthesized TiO2 NPs in their potential applications.

10.
RSC Adv ; 8(65): 37176-37183, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35557822

RESUMO

Persuaded by the necessity of finding new sources of antibiotics, silver nanoparticles (Ag NPs) were synthesized by adopting a newly developed green synthesis technique and subsequently, their antibacterial activity against different pathogenic bacteria was evaluated. We have successfully synthesized bio-molecule capped ferromagnetic Ag NPs with an average crystallite size of 13 nm using AgNO3 solution as a precursor and Artocarpus heterophyllus leaf extract as a reducing and capping agent. The characterization of the synthesized Ag NPs was carried out using various techniques such as UV-visible (UV-Vis) spectroscopy, energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetry (TG), and vibrating sample magnetometer (VSM) analyses. After exposing the synthesized Ag NPs to two Gram-positive bacteria - Staphylococcus aureus and Bacillus cereus and two Gram-negative bacteria - Escherichia coli and Salmonella typhimurium, the zones of inhibition were found to be 15, 16, 19, and 18 mm, respectively. These results imply that the Artocarpus heterophyllus leaf extract mediated green synthesized bio-molecules encapsulated Ag NPs can be considered as a potential antibiotic against human pathogens which is very encouraging.

11.
Nanotechnology ; 27(28): 285702, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27251385

RESUMO

The paper reports the thermo-therapeutic applications of chitosan- and PEG-coated nickel ferrite (NiFe2O4) nanoparticles. In this study NiFe2O4 nanoparticles were synthesized by the co-precipitation method, tuning the particle size through heat treatment in the temperature range from 200-800 °C for 3 h. XRD and TEM analysis revealed that the the ultrafine nanoparticles were of size 2-58 nm. Crystallinity of the NiFe2O4 nanoparticles in the as-dried condition with the particle size ∼2-3 nm was confirmed from the presence of a lattice fringe in the HRTEM image. VSM measurements showed that a superparamagnetic/ferromagnetic transition occurs with increasing particle size, which was further confirmed by Mössbauer spectroscopy. The nickel ferrite nanoparticles with optimum particle size of 10 nm were then coated with materials commonly used for biomedical applications, i.e. chitosan and PEG, to form homogeneous suspensions. The hydrodynamic diameter and the polydispersity index (PDI) were analyzed by dynamic light scattering at the physiological temperature of 37 °C and found to be 187 nm and 0.21 for chitosan-coated nanoparticles and 285 nm and 0.32 for PEG-coated ones. The specific loss power of rf induction heating by the set-up for hyperthermia and r 2 relaxivity by the nuclear magnetic resonance were determined. The results of induction heating measurements showed that the temperature attained by the nanoparticles of size 10 nm and concentration of about 20 mg ml(-1) was >70 °C (for chitosan) and >64 °C (for PEG). It has been demonstrated that the required temperature for hyperthermia heating could be tuned by tuning the particle size, shape and magnetization and the concentration of solution. For other potential biomedical applications of the NiFe2O4 nanoparticle solution, e.g. magnetic resonance imaging, the NMR studies yielded the T 1 and T 2 relaxivities as 0.348 and 89 mM(-1) s(-1) respectively. The fact that the T 2 relaxivity is orders of magnitude higher than T 1 indicates that this is suitable as a T 2 contrast agent for magnetic resonance imaging.


Assuntos
Nanopartículas Metálicas , Quitosana , Compostos Férricos , Níquel
12.
J Trop Pediatr ; 50(6): 357-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15537722

RESUMO

The study was conducted to investigate the micronutrient profile of human colostrum, and to assess the association of maternal characteristics to the micronutrients. Colostral concentrations of antioxidant vitamins E, C, and A were 21.34 +/- 8.47, 148.92 +/- 43.64, 0.79 +/- 0.42 micromol/l, respectively. The antioxidant minerals copper, zinc, and iron contents were 19.17 +/- 11.73, 63.69 +/- 12.82, 11.44 +/- 1.46 micromol/l, respectively. Maternal characteristics did not have any influence on the colostral micronutrients.


Assuntos
Colostro/química , Bem-Estar Materno , Micronutrientes/metabolismo , Minerais/metabolismo , Adolescente , Adulto , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Atitude Frente a Saúde , Bangladesh , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Cobre/análise , Cobre/metabolismo , Países em Desenvolvimento , Feminino , Humanos , Ferro/análise , Ferro/metabolismo , Micronutrientes/análise , Minerais/análise , Período Pós-Parto , Gravidez , Medição de Risco , Sensibilidade e Especificidade , Vitamina A/análise , Vitamina A/metabolismo , Vitamina E/análise , Vitamina E/metabolismo , Zinco/análise , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA