Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Forensic Sci ; 68(3): 1020-1035, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36959718

RESUMO

Forensic casework samples often include human hairs, teeth, and bones. Hairs with roots are routinely processed for DNA analysis, while rootless hairs are either not tested or processed using mitochondrial DNA. Bones and teeth are submitted for human remains identifications for missing persons and mass disaster cases. DNA extraction from these low templates and degraded samples is challenging. The new InnoXtract DNA extraction method utilizes magnetic beads that are optimized to bind small DNA fragments, as small as 100 base pairs, to purify high-yield DNA from compromised samples. This validation study evaluates InnoXtract's ability to obtain amplifiable DNA from samples such as rootless hairs and skeletal remains. Studies performed include sensitivity, stability, repeatability, reproducibility, non-probative samples, and comparison to standard organic extractions. Sensitivity studies demonstrate average yield recoveries ranging from 53% to 100% and 73% to 85% for the InnoXtract hair and bone methods, respectively. Studies demonstrate consistent results across a range of sample types, such as insulted and un-insulted bone and teeth, as well as hair shafts from donors of various ages, gender, race, and hair characteristics. The InnoXtract bone method outperformed organic extraction. The method was successfully automated on a MagMAX™ Express-96, with recoveries over 70% relative to the manual version. InnoXtract has the potential as an automated high-throughput, high-yield bone extraction method with 6 h of total extraction time for up to 96 samples. The validation study results demonstrate that the InnoXtract kits produce high-yield and high-quality DNA from compromised bone, teeth, and hair shaft samples.


Assuntos
Impressões Digitais de DNA , Cabelo , Humanos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase , Impressões Digitais de DNA/métodos , DNA Mitocondrial/genética
2.
Forensic Sci Int Genet ; 59: 102690, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338894

RESUMO

The Sperm X method uses a nanotechnology derived polymer membrane that functions as a separation medium to effectively trap sperm cells while enabling efficient flow through of the digested epithelial cell DNA. This specialized membrane enabled development of a method that could significantly increase a forensic laboratory's ability to obtain male sperm fraction DNA profiles. The SpermX device provides a rapid, reproducible procedure that is easy to implement in a single-tube format as well as high-throughput truly automated hands-free workflows. Validation studies, performed using the manual SpermX method, include sensitivity, stability, precision (reproducibility and repeatability), mixtures, and a method comparison to the traditional differential extraction. Sensitivity and method comparison studies demonstrated a wide range of sperm cells, from a high of over 2.78 million cells (9158 ng) to a low of 25 cells (83 pg), can be trapped by the SpermX membrane. Stability studies on various substrates (i.e., carpet, cotton, denim, polyester, and silk) and degraded semen gave the expected male DNA profiles. Data from the same operator and a different operator were consistent with low variance. Mixtures, with ratios ranging from approximately 10:1-18182:1, created to simulate real casework type samples including buccal/semen, vaginal epithelial/semen, and post coital swabs at different time intervals, were tested. A comparison of the SpermX method to the conventional differential extraction method resulted in comparable probative male profile allelic data and associated statistical probabilities. For low level sperm samples, down to 25 sperm cells (83 pg), the SpermX method outperformed the conventional differential extraction with more genotypic information and associated probabilities.


Assuntos
Impressões Digitais de DNA , Delitos Sexuais , DNA/genética , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sêmen , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA