Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28460, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590868

RESUMO

The purpose of the current investigation was to conduct a detailed analysis of the chemical components and medicinal properties of the methanolic crude extract derived from the leaves of Cassia fistula. This analysis was carried out using both experimental (in vivo) and computational (in silico) methods. Eleven chemicals were chromatographically isolated using GC-MS/MS, which utilizes a library of NIST and Wiley 2020 versions. FTIR analysis of the extract was performed to identify the functional group of the compounds. The glucose-lowering capacity, analgesic, and anti-diarrheal activities of methanolic crude extract were analyzed utilizing a well-known oral glucose tolerance test, tail immersion method, writhing assay, and castor oil-induced diarrheal mice methods, respectively. After 60 min, 120 min, and 180 min of loading the drugs, a significant reduction of blood glucose levels was examined (p < 0.05) in all the extracts of this plant (200 mg/kg, 400 mg/kg and 600 mg/kg) utilized in this research at a time-dependent manner. Similarly, all the crude extracts showed significant (p < 0.05) effects against pain centrally and peripherally compared to the standard drug morphine (2 mg/kg bw) and diclofenac sodium (50 mg/kg bw). Moreover, the methanol extract (400 mg/kg bw) manifested anti-diarrheal efficacy by inhibiting 72.0 % of the diarrheal episode in mice compared to the standard drug loperamide (inhibition = 80.0%). The results of the computational investigations corroborated existing in-vivo findings. Greater or close to equivalent binding affinity to the active binding sites of kappa opioid receptor, glucose transporter 3 (GLUT 3), and cyclooxygenase 2 was indicative of the potential anti-diarrheal, hypoglycemic, and analgesic characteristics of the isolated compounds (COX-2). Moreover, anticancer and antimicrobial potentiality was also found impressive through evaluation of binding affinity with epidermal growth factor receptor (EGFR) and dihydrofolate reductase (DHFR) receptors. Results from this study indicated that C. fistula might be a beneficial natural resource for treating diarrhea, hyperglycemia, and pain. However, additional research is required to conduct a comprehensive phytochemical screening and establish precise action mechanisms of the crude extract or the plant-derived compounds.

2.
Sci Rep ; 14(1): 7268, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538645

RESUMO

Aqueous solution containing different concentration (0.5, 0.6 and 1.0%) (w/v) of Polyvinyl pyrrolodon-Iodine (PVP-I) complex, a well-known antiseptic; is prepared and the stability and homogeneity of these solution is assessed as per the ICH Guidelines and International Harmonized Protocol respectively. The solutions were found to be sufficiently homogeneous and stable for a year at 25 °C (60%RH). Measurement uncertainty of the prepared PVP-I solutions were estimated by identifying possible sources of uncertainty using Ishikawa diagram and preparing uncertainty budget based on scope of calibration laboratory. The stable and homogenized PVP-I solution is to be used in a clinical trial for the application on oro and nasopharynx against novel SARS-CoV-2 Virus.


Assuntos
Anti-Infecciosos Locais , COVID-19 , Humanos , SARS-CoV-2 , Povidona-Iodo , Polivinil , Incerteza , COVID-19/epidemiologia , Nasofaringe
3.
ACS Omega ; 9(1): 474-485, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222627

RESUMO

This study investigates the effectiveness of kaolin and bentonite catalysts in improving liquid hydrocarbon yields during the pyrolysis of waste tires. Raw clay, nitric acid-treated clay, and mono- or bimetal-impregnated clay were used as catalysts in the pyrolysis of waste tire. Acid-treated kaolin produced a higher yield of liquid hydrocarbons (43.24-47%) compared to acid-treated bentonite (35.34-41.85%). This improvement in the liquid yield can be attributed to the higher specific surface area and pore diameter of the acid-treated clay in comparison to raw kaolin (39.48%) and raw bentonite (31.62%). Moreover, the use of metal-impregnated catalysts, such as Fe/kaolin and Ni/Fe/kaolin, resulted in higher liquid yields (47%) compared to the 3 M HNO3-treated kaolin catalyst (43.24%). Gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of limonene, a crucial ingredient for commercial perfume production, in the liquid products. The calorific values of oil obtained through kaolin and bentonite catalysis were measured at 13,922 and 10,174 kcal/kg, respectively, further highlighting the potential of these catalysts in waste tire valorization.

4.
Heliyon ; 9(11): e21556, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027912

RESUMO

Gamma radiation has notable impacts on the flesh of mangoes. In this research, Katimon mangoes were subjected to different levels of irradiation (0.5, 1.0, 1.5, and 2.0 kGy) using a60Co irradiator. The results showed that irradiation significantly reduced the microbial population in the mango peels, with the 1.5 kGy dose showing the most significant reduction. Irradiation also delayed ripening and extended the shelf life of the mango peels. The total fat, protein, ash, moisture, and sugar content of the mango peels were all affected by irradiation. The total protein content, ash content and moisture content increased after irradiation, while the fat content remained relatively unchanged. The sugar content increased in all samples after storage, but the non-irradiated samples had higher sugar levels than the irradiated ones. The dietary fiber content of the mango peels was not significantly affected by irradiation. The vitamin C content decreased in all samples after storage. The titratable acidity and total soluble solids content of the mango peels increased after storage, but there were no significant differences between the irradiated and non-irradiated samples. Antioxidant activity and cytotoxicity assessment highlighted the antioxidant potential and reduced toxicity of irradiated samples. Additionally, the antimicrobial effectiveness of irradiated mango peels was evaluated. The most substantial inhibitory zones (measuring 16.90 ± 0.35) against Pseudomonas sp. were observed at a radiation dose of 1.5 kGy with 150 µg/disc. To identify potential antimicrobial agents, the volatile components of mangoes irradiated with 1.5 kGy were analyzed through GC-MS. Subsequently, these compounds were subjected to in silico studies against a viable protein, TgpA, of Pseudomonas sp. (PDB ID: 6G49). Based on molecular dynamic simulations and ADMET properties, (-)-Carvone (-6.2), p-Cymene (-6.1), and Acetic acid phenylmethyl ester (-6.1) were identified as promising compounds for controlling Pseudomonas sp.

5.
RSC Adv ; 13(41): 28773-28784, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37790109

RESUMO

Cassia occidentalis L. is widely used in indigenous and traditional medicine, but its impact on multi-drug resistant (MDR) bacterial infections mostly remains unknown. Therefore, this study aimed to evaluate the in vitro antibacterial efficiency of methanol and ethyl acetate extracts of C. occidentalis L. leaves (MECOL and EAECOL) against multi-drug resistant Pseudomonas aeruginosa and to identify potential antibacterial agents through computational studies targeting the LasR protein. Initially, 82 compounds were identified using GC-MS analysis, and the functional groups were determined through FT-IR analysis. Both extracts of the plant exhibited dose-dependent antibacterial activity, with MICs of 104.16 ± 36.08 µg mL-1 for MECOL and 83.33 ± 36.08 µg mL-1 for EAECOL, and an MBC of 125 µg mL-1. Among the 82 compounds, 12 potential compounds were identified based on binding scores using molecular docking with the LasR protein and MM-GBSA analysis. Furthermore, screening for ADME properties, including physicochemical features, water solubility, lipophilicity, RO5 compliance, and toxicity, identified the top three compounds: methyl dihydrojasmonate, methyl benzoate, and 4a-methyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone, which also demonstrated binding affinity with the active site residues of the LpxC protein of the bacteria. Additionally, molecular dynamics (MD) simulations confirmed the binding reliability of these three phytochemicals to LasR's active pocket, comparable to the protein native inhibitory ligands (C12-HSL). The study offers scientific support for the traditional use of C. occidentalis in treating bacterial infections, highlighting the potential of the three compounds as leads for developing LasR inhibitors to combat multi-drug resistant P. aeruginosa.

6.
BMC Microbiol ; 23(1): 241, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648982

RESUMO

BACKGROUND: Arsenic (As) and its species are major pollutants in ecological bodied including groundwater in Bangladesh rendering serious public health concern. Bacteria with arsenotrophic genes have been found in the aquifer, converting toxic arsenite [As (III)] to less toxic arsenate [As (V)] that is easily removed using chemical and biological trappers. In this study, genomic and metagenomic approaches parallel to culture-based assay (Graphical abstract) have made it possible to decipher phylogenetic diversity of groundwater arsenotrophic microbiomes along with elucidation of their genetic determinants. RESULTS: Seventy-two isolates were retrieved from six As-contaminated (average As concentration of 0.23 mg/L) groundwater samples from Munshiganj and Chandpur districts of Bangladesh. Twenty-three isolates harbored arsenite efflux pump (arsB) gene with high abundance, and ten isolates possessing arsenite oxidase (aioA) gene, with a wide range of minimum inhibitory concentration, MICAs (2 to 32 mM), confirming their role in arsenite metabolism. There was considerable heterogeneity in species richness and microbial community structure. Microbial taxa from Proteobacteria, Firmicutes and Acidobacteria dominated these diversities. Through these combinatorial approaches, we have identified potential candidates such as, Pseudomonas, Acinetobacter, Stenotrophomonas, Achromobacter, Paraburkholderia, Comamonas and Klebsiella and associated functional genes (arsB, acr3, arsD, arsH, arsR) that could significantly contribute to arsenite detoxification, accumulation, and immobilization. CONCLUSIONS: Culture-dependent and -independent shotgun metagenomic investigation elucidated arsenotrophic microbiomes and their functions in As biogeochemical transformation. These findings laid a foundation for further large-scale researches on the arsenotrophic microbiomes and their concurrent functions in As biogeochemical transformation in As-contaminated areas of Bangladesh and beyond.


Assuntos
Arsênio , Arsenitos , Microbiota , Filogenia
7.
Heliyon ; 9(7): e17767, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501992

RESUMO

Immunity status after mass vaccination program against SARS CoV-2 has not been evaluated in Bangladesh. This study aims to assess the IgG response against SARS-CoV-2 among the vaccine receivers in Bangladesh. After signed consent, blood samples were tested for SARS CoV-2 IgG from volunteers between March, 21 and April, 22 using ELISA where IgG index ≥0.9 was considered as positive Among 3034 participants, IgG positivity was calculated approximately 82% for vaccine recipients; lowest (58%) during March-April, 21 which increased to 85-95% later. IgG positivity and mean index was 82% and 3.04 in vaccinated whereas 56% and 1.5 in unvaccinated cases. IgG positivity and mean index reduced with age: 90% and 2.56, 79% and 2.23, 73% and 2.13 in 18-40 y, 41-60 y, >60 y group respectively. Vaccinated with COVID-19 history showed highest IgG positivity and index (94% and 3.1) compared to vaccinated without COVID-19 history (76% and 1.6), unvaccinated with COVID-19 history (75% and 1.5) and unvaccinated without COVID-19 history (51% and 0.9). IgG positivity and index reduced as interval between IgG testing and vaccination increases. Our findings suggest a robust IgG response among the vaccine recipients. Negative correlation of IgG positivity and index with age and time necessitates continuous monitoring of immunity status.

8.
Diagnostics (Basel) ; 13(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175013

RESUMO

A viral transport medium (VTM) was developed following the Centers for Disease Control and Prevention, USA (US-CDC) standard operating procedure (SOP) DSR-052-05 with necessary improvisation and was used for storing coronavirus disease 2019 (COVID-19) swab specimens. Considering Bangladesh's supply chain and storage conditions, improvisation was essential for extending sample storage time while retaining efficiency. In-house VTM was produced using Hank's balanced salt solution (HBSS) supplemented with 1% bovine serum albumin V (BSA), 0.5 µg /mL of gentamicin sulfate, and 100 µg/mL of fluconazole. The produced VTM composition, quality, sterility, specificity, and efficiency were verified in-house and through an independent contract research organization (CRO). An accelerated stability study projected that under the recommended temperature (4 °C), it would remain stable for four months and preserve samples for over a month. The real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) test detected the targeted N gene and ORF1ab gene from the VTM stored samples. Our VTM is equally as effective as the Sansure Biotech VTM in keeping SARS-CoV-2 RNA specimens detectable in rRT-PCR (100% sensitivity and specificity in random and blinded samples). In conclusion, the BRiCM VTM will make the battle against pandemics easier by effectively collecting and storing nasopharyngeal and oropharyngeal swabs for COVID-19 detection.

9.
Heliyon ; 9(5): e16137, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251822

RESUMO

Plant-based nanoformulation is one of the novel approaches for therapeutic benefits. This research synthesized a silver nanoparticle from the polyherbal combination of four plants/seeds (Momordica charantia, Trigonella foenum-graecum, Nigella sativa, and Ocimum sanctum) and investigated its antidiabetic effects in streptozotocin-induced Wistar albino rat model. The polyherbal extract (PH) was extracted by the Soxhlet-solvent extraction method and the resulting crude extract was undergone for silver nanoparticle synthesis. The PH extract was subjected to a four-week intervention in fructose-fed streptozotocin-induced Wistar Albino rats' models and in vitro antioxidative tests. Experimental animals (age: 6-7 weeks, male, body weight: 200-220 g), were divided into five groups including normal control (NC), reference control (RC), diabetic control (DC), and treatment groups PH200, PH100, and PHAgNP20. After three weeks of intervention, body weight, weekly blood glucose level, oral glucose tolerance test, AST, ALT, alkaline phosphatase, total cholesterol, triglycerides, uric acid, urea, and creatinine level of PH200 were found to be significantly (P < 0.05) improved compared to the diabetic control. The same dose demonstrated better regeneration of damaged pancreatic and kidney tissues. In vitro antioxidant assay manifested promising IC50 values of 86.17 µg/mL for DPPH, 711.04 µg/mL for superoxide free radical, and 0.48 mg/mL for Iron chelating activity of the polyherbal extract. GC-MS analysis impacted the major volatile compounds of the PH. The data demonstrate that the PH and its nanoparticles could be a novel source of antidiabetic therapeutics through an advanced dose-response study in the type 2 diabetic model.

10.
Food Sci Nutr ; 11(3): 1553-1562, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911838

RESUMO

Phoenix sylvestris Roxb. (Arecaceae) seeds are used in the treatment of diabetes in the traditional system of medicine. The present study evaluated antihyperglycemic and antioxidant activities as well as the total phenolic and flavonoid content of the methanol extract of P. sylvestris seeds (MEPS). The constituents of the extract were identified by GC-MS analysis. MEPS demonstrated strong antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 162.70 ± 14.99 µg) and nitric oxide (NO) (IC50 = 101.56 ± 9.46 µg/ml) free radicals. It also possesses a substantial amount of phenolics and flavonoids. It significantly (p < .05) reduced blood glucose levels in glucose-loaded and alloxan-induced diabetic mice at the doses of 150 and 300 mg/kg b.w., respectively. A total of 46 compounds were detected and identified by gas chromatography-mass spectroscopy (GC-MS) analysis, among which 8-methylisoquinoline N-oxide (32.82%) was predominant. The phytochemical study by GC-MS revealed that the MEPS possesses compounds which could be related to its antidiabetic and antioxidant activities. To recapitulate, P. sylvestris seeds can be a very good option for antidiabetic and antioxidant activity though further studies are still recommended to figure out the responsible phytochemicals and establish their exact mechanism of action.

11.
BMC Endocr Disord ; 22(1): 309, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494801

RESUMO

The novel coronavirus COVID-19 has caused a global pandemic with many long-ranging effects on the physiological balance of the human body. The impact of COVID-19 on the thyroid axis remains uncertain. Our aim was to assess the long-term consequences of COVID-19 infection and its vaccination with thyroid hormones. Thirty laboratory-confirmed COVID-19-positive patients with no vaccination record, thirty COVID-19-negative patients with vaccination records, and ten healthy subjects were retrospectively, and cross-sectionally enrolled in this study. An ELISA assay was performed to evaluate thyroid function tests, including the total triiodothyronine (TT3), total thyroxine (TT4), and thyroid stimulating hormone (TSH). We found decreased levels of TT3, average or low plasma T4 levels, and standard or slightly decreased TSH levels in unvaccinated COVID-19-positive patients than in the healthy group, while the vaccinated COVID-19-negative group had normal thyroid hormone levels compared to controls. The correlation between TT3 and TSH levels gradually shifted from no association to a negative pattern in the unvaccinated COVID-19-positive group. Again, a highly significant negative correlation between TSH and TT3 was observed on days above 150, although a slight fluctuation was noted on day 90. This pilot study from Bangladesh shows that abnormalities in thyroid function can be observed during COVID-19 infection and after vaccination, which gradually recovers over time.


Assuntos
COVID-19 , Hipotireoidismo , Humanos , Projetos Piloto , Estudos Retrospectivos , COVID-19/prevenção & controle , Tri-Iodotironina , Tiroxina , Tireotropina , Hormônios Tireóideos
12.
Sci Rep ; 12(1): 19137, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352019

RESUMO

The plant growth-boosting biofilm-forming bacteria Bacillus pseudomycoides is able to promote growth and drought stress tolerance in wheat by suppressing the MYB gene, which synthesizes Myb protein (TaMpc1-D4) through secreted volatile compounds. In the present study, Triticum aestivum seeds were inoculated with five distinct bacterial strains. The growth, germination rate, root-shoot length, RWC, and chlorophyll content of seedlings were investigated. Furthermore, the levels of soluble sugars, proteins, H2O2, NO, cell death, and antioxidant enzymes (CAT, SOD, POD, and APX) were observed throughout the growth stage. All of the results showed that B. pseudomycoides had a substantially higher ability to form biofilm and promote these traits than the other strains. In terms of molecular gene expression, B. pseudomycoides inoculation strongly expressed the Dreb1 gene by silencing the expression of MYB gene through secreted volatile compounds. For identifying the specific volatile compound that silenced the MYB gene, molecular docking with Myb protein was performed. Out of 45 volatile compounds found, 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione and 3,5-ditert-butylphenol had a binding free energy of - 6.2 and - 6.5, Kcal/mol, respectively, which predicted that these compounds could suppress this protein's expression. In molecular dynamics simulations, the RMSD, SASA, Rg, RMSF, and hydrogen bonding values found assured the docked complexes' binding stability. These findings suggest that these targeted compounds may be suppressing Myb protein expression as well as the expression of Dreb1 and other drought response genes in wheat. More research (field trial) into plant growth and drought stress is needed to support the findings of this study.


Assuntos
Secas , Triticum , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Simulação de Acoplamento Molecular
13.
Diagnostics (Basel) ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36359461

RESUMO

In this study, we evaluated the performance of the in-house developed rRT-PCR assay for SARS-CoV-2 RNA targeting the envelope (E) and nucleocapsid (N) genes with internal control as human RNase P. A total of 50 positive samples and 50 negative samples of SARS-CoV-2 were tested by a reference kit at site 1 and a subset (30 positives and 16 negatives) of these samples are tested blindly at site 2. The limit of detection (LoD) was calculated by using a replication-deficient complete SARS-CoV-2 genome and known copy numbers, where Pseudo-virus samples were used to evaluate accuracy. On site 1, among the 50 SARS-CoV-2 positive samples 24, 18, and eight samples showed high (Ct < 26), moderate (26 < Ct ≤ 32), and low (32 < Ct ≤ 38) viral load, respectively, whereas in site 2, out of 30 SARS-CoV-2 positive samples, high, moderate, and low viral loads were found in each of the 10 samples. However, SARS-CoV-2 was not detected in the negative sample. So, in-house assays at both sites showed 100% sensitivity and specificity with no difference observed between RT PCR machines. The Ct values of the in-house kit had a very good correlation with the reference kits. LoD was determined as 100 copies/mL. It also displayed 100% accuracy in mutant and wild-type SARS-CoV-2 virus. This Bangasure™ RT-PCR kit shows excellent performance in detecting SARS-CoV-2 viral RNA compared to commercially imported CE-IVD marked FDA authorized kits.

14.
Genomics ; 114(6): 110497, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182010

RESUMO

The goal of this study was to identify the genomic variants and determine molecular epidemiology of SARS-CoV-2 virus during the early pandemic stage in Bangladesh. Viral RNA was extracted, converted to cDNA, and amplified using Ion AmpliSeq™ SARS-CoV-2 Research Panel. 413 unique mutants from 151 viral isolates were identified. 80% of cases belongs to 8 mutants: 241C toT, 1163A toT, 3037C toT, 14408C toT, 23403A toG, 28881G toA, 28,882 G toA, and 28883G toC. Observed dominance of GR clade variants that have strong presence in Europe, suggesting European channel a possible entry route. Among 37 genomic mutants significantly associated with clinical symptoms, 3916CtoT (associated with sore-throat), 14408C to T (associated with cough-protection), 28881G to A, 28882G to A, and 28883G to C (associated with chest pain) were notable. These findings may inform future research platforms for disease management and epidemiological study.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Genômica , China
15.
Life Sci ; 309: 121044, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208657

RESUMO

The present study attempted to scrutinize the protective effect of the methanolic extract of P. chaba stem bark against paracetamol-induced hepatotoxicity in Sprague-Dawley rats, along with the gas chromatography-mass spectrometry (GC-MS) analysis to identify phytochemicals, which were further docked in the catalytic site of CYP2E1 and the MD simulation for system that plays a major role in the bio-activation of toxic substances that produce reactive metabolites, leading to hepatotoxicity. P. chaba stem methanol extract (250 and 500 mg/kg) were treated orally with the negative control and the negative control silymarin (50 mg/kg) groups. Phytochemical profiling was conducted using GC-MS. In in-silico studies, PyRx software was used for docking analysis and the stability of the binding mode in the target active sites was evaluated through a set of standard MD-simulation protocols using the Charmm 27 force field and Swiss PARAM. Co-administration of P. chaba at both doses with APAP significantly reduced the APAP-augmented liver marker enzymes ALT, AST, ALP, and LDH, along with serum albumin, globulin, hepatic enzymes, histopathological architecture, lipid profiles, total protein, and total bilirubin, and elevated the levels of MDA. The GC-MS analysis indicated that P. chaba extract is enriched in fatty acid methyl esters (46.23 %) and alkaloids (10.91 %) and piperine is represented as a main phytochemical. Among all the identified phytochemicals, piperine (-8.0 kcal/mol) was found to be more interacting and stable with the binding site of CYP2E1. Therefore, all of our findings may conclude that the P. chaba stem extract and its main compound, piperine, are able to neutralize APAP-induced hepatic damage.


Assuntos
Alcaloides , Doença Hepática Induzida por Substâncias e Drogas , Piper , Silimarina , Ratos , Animais , Acetaminofen/toxicidade , Ratos Sprague-Dawley , Citocromo P-450 CYP2E1 , Cromatografia Gasosa-Espectrometria de Massas , Doença Hepática Induzida por Substâncias e Drogas/patologia , Metanol/farmacologia , Casca de Planta , Extratos Vegetais/uso terapêutico , Fígado , Alcaloides/farmacologia , Silimarina/farmacologia , Bilirrubina , Lipídeos/farmacologia , Ácidos Graxos , Albumina Sérica , Ésteres/farmacologia
16.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 2): 3283-3292, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35572740

RESUMO

To assess the virucidal effect of povidone iodine (PVP-I) on severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) located in the nasopharynx and suitable dose-formulation for nasal application were the purpose of this clinical trial. This single-center, open-label randomized clinical trial with a 7-arm parallel-group design was conducted in Dhaka Medical College (DMC) Hospital. A total of 189 reverse transcription-polymerase chain reaction (RT-PCR)-confirmed SARS CoV-2 positive cases aged 12-90 years with symptoms was sequentially enrolled following randomization. Nasopharyngeal clearance of SARS-CoV-2 was tested against PVP-I nasal irrigation (NI) at diluted concentrations of 0.4%, 0.5% and 0.6%, and PVP-I nasal spray (NS) at diluted concentrations of 0.5% and 0.6%. All groups were compared to the corresponding controls (distilled water). Written informed consent was ensured before participation. All procedures were conducted in after ethical clearance from the Ethical Review Board and in accordance with the Declaration of Helsinki. Viral clearance in a repeat RT-PCR (qualitative) was the primary outcome, and occurrence of any adverse event following administration of testing drug was considered as the secondary outcome. Analysis was performed using SPSS (Version 26). All cases were randomized into seven groups and each group consists of 27-patient. Mean age of the cases 43.98 ± 12.67 years (SD). All strength of NI were effective in nasopharyngeal clearance compared to the control (0.4%, p = 0.006; 0.5%, p < 0.001; and 0.6%, p = 0.018). Similarly, all strength of the NS is also effective than control (0.5%, p = < 0.001; and 0.6%, p ≤ 0.001). Highest nasopharyngeal clearance was observed in patients using 0.5% NI (n = 25, 92.6%, p = 0.018). Nasal irritation was the single most adverse event recorded in this trial and found in two patients using 0.4%, and 0.6% PVP-I NI, respectively. Both PVP-I NS and NI are effective for nasopharyngeal clearance in-vivo. However, further community trials are needed to repurpose these solutions as preventive agents against SARS-CoV2. Ethical clearance memo no ERC-DMC/ECC/2020/93. Trial registration NCT Identifier number NCT04549376. Supplementary Information: The online version contains supplementary material available at 10.1007/s12070-022-03106-0.

17.
J Cell Mol Med ; 26(12): 3343-3363, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502486

RESUMO

Since ancient times, plants have been used as green bioresources to ensure a healthier life by recovering from different diseases. Kattosh (Lasia spinosa L. Thwaites) is a local plant with various traditional uses, especially for arthritis, constipation and coughs. This research investigated the effect of Kattosh stem extract (LSES) on streptozotocin-induced damage to the pancreas, kidney, and liver using in vitro, in vivo and in silico methods. In vitro phytochemical, antioxidative and anti-inflammatory effects of LSES were accomplished by established methods followed by antidiabetic actions in in vivo randomized controlled intervention in STZ-induced animal models for four weeks. In an in silico study, LSES phytocompounds interacted with antidiabetic receptors of peroxisome proliferator-activated receptor-gamma (PPAR, PDB ID: 3G9E), AMP-activated protein kinase (AMPK, PDB ID: 4CFH) and α-amylase enzyme (PDB ID: 1PPI) to verify the in vivo results. In addition, LSES showed promising in vitro antioxidative and anti-inflammatory effects. In contrast, it showed a decrease in weekly blood glucose level, normalized lipid profile, ameliorated liver and cardiac markers, managed serum AST and ALT levels, and increased glucose tolerance ability in the animal model study. Restoration of pancreatic and kidney damage was reflected by improving histopathological images. In ligand-receptor interaction, ethyl α-d-glucopyranoside of Kattosh showed the highest affinity for the α-amylase enzyme, PPAR, and AMPK receptors. Results demonstrate that the affinity of Kattosh phytocompounds potentially attenuates pancreatic and kidney lesions and could be approached as an alternative antidiabetic source with further clarification.


Assuntos
PPAR gama , Extratos Vegetais , Proteínas Quinases Ativadas por AMP , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Rim/patologia , PPAR gama/metabolismo , Pâncreas/patologia , Extratos Vegetais/farmacologia , Estreptozocina/toxicidade , alfa-Amilases/farmacologia
18.
Biomed Res Int ; 2022: 4451144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35097117

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) detection can be an effective complementary tool to the reverse transcription-polymerase chain reaction (RT-PCR) test in estimating the true burden of coronavirus diseases 2019 (COVID-19) and can serve as baseline data, especially after the roll-out of vaccines against SARS-CoV-2. In this study, we aim to determine the seropositivity of SARS-CoV-2 IgG among people in Dhaka, Bangladesh. Volunteers, mostly asymptomatic people from Dhaka, were enrolled between October 2020 and February 2021. After obtaining participants' signed consents, blood samples were tested for SARS-CoV-2 IgG antibody, following the standard protocol of testing within 72 hours of collection. SARS-CoV-2 IgG was positive in 42% (101/239) of the cases. No difference was observed in terms of IgG positivity and IgG levels when stratified by age, gender, and blood group. However, RT-PCR-positive cases presented higher IgG levels compared to RT-PCR-negative/RT-PCR-not performed cases. SARS-CoV-2 IgG was found in 31% (32/102) and 28% (19/67) of RT-PCR-negative and RT-PCR-not performed cases, respectively. For RT-PCR-positive but SARS-CoV-2 IgG-negative cases (n = 13), the average time gap between the RT-PCR and SARS-CoV-2 IgG tests of six months indicates a gradual reduction of IgG. Eight cases for which samples were tested at two time points, three months apart, showed presented a decline in IgG levels with time (median IgG index of 2.55 in the first sample versus 1.22 in the second sample). Our findings reveal that several mild/asymptomatic cases that were RT-PCR-negative/not tested exist in the community, and IgG levels reduce in the human body over time.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , Imunoglobulina G/sangue , Adulto , Idoso , Anticorpos Antivirais/sangue , Bangladesh/epidemiologia , Antígenos de Grupos Sanguíneos , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Vacinas contra COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Estudos Soroepidemiológicos
19.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 2): 2963-2967, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34026595

RESUMO

Povidone-iodine (PVP-I) is a time-tested antiseptic agent with excellent virucidal (99.99%) properties. Repurposing it against coronavirus disease-19 (COVID-19) is a relatively newer concept and has been sparsely tested in vivo. The most common route of entry of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) is the nasopharynx. Averting colonization of the virus could be one of the best options to reduce the incidence of infection. PVP-I gargle and mouthwash were found to be effective in vitro rapid inactivation against SARS-CoV-2 on a smaller scale (Hassandarvish et al. in BDJ 1-4, 2020, Pelletier et al. in ENTJ 1-5, 2020). However, efficacy in humans is lacking. To assess the virucidal effect of PVP-I against SARS-CoV-2 located in the nasopharynx was the objective of this parallel armed randomized clinical trial. We screened all RT-PCR-confirmed COVID-19 cases aged 18 years and above with symptoms. Written informed consent was obtained before randomization. Nasopharyngeal clearance of SARS-CoV-2 was tested after single time application of PVP-I nasal irrigation (NI) at diluted concentrations of .4%, .5% and .6% and PVP-I nasal spray (NS) at diluted concentrations of .5% and .6%. All groups were compared to the corresponding controls (distilled water). The primary outcome was viral clearance in a repeat RT-PCR (qualitative), and the secondary outcome was the number of adverse events. Final data analysis was performed using the statistical software SPSS (Version 20). A total of 189 confirmed COVID-19 cases were randomized into seven groups: 27 patients in each group. Of all, 159 (84.1%) were male, and 30 (15.9%) were female. We observed a statistically significant proportion of nasopharyngeal clearance with all strengths of PVP-I NI and PVP-I NS compared to the corresponding controls. Additionally, 0.5% NI was significantly better than 0.5% NS for viral clearance (p = 0.018) and had the highest nasopharyngeal clearance among all strengths (n = 25, 92.6%). 0.6% NS is better than CNS and 0.5%NS in viral clearance. The only adverse event was nasal irritation recorded in two patients each in the 0.4% and 0.6% PVP-I NI groups (Tables 1 and 2). PVP-I NI and NS are proved as effective virucidal agent against SARS-CoV-2 in human body. Our recommendation is to use PVP-I in naopharynx (as well as oropharynx) to prevent COVID-19.

20.
Arab J Chem ; 15(2): 103600, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34909068

RESUMO

Although World Health Organization-approved emergency vaccines are available in many countries, the mortality rate from COVID-19 remains high due to the fourth or fifth wave and the delta variant of the coronavirus. Thus, an effective mechanistic investigation in treating this disease is urgently needed. In this work, we extracted phytochemicals from two mangrove plants, Pistacia integerrima and Pandanus odorifer, assessing their potential actions against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. The antioxidant activities of Pistacia integerrima leaves and fruits were 142.10 and 97.13 µg/mL, respectively, whereas Pandanus odorifer leaves and fruits were 112.50 and 292.71 µg/mL, respectively. Furthermore, leaf extracts from both plants had lower cytotoxicity against Artemia salina than fruit extracts. Gas chromatography-mass spectrometry analysis revealed a total of 145 potential phytochemicals from these extracts. Three phytochemicals, 28-demethyl-beta-amyrone, 24-Noroleana-3,12-diene, and stigmasterol, displayed binding free energy values of - 8.3, -7.5, and - 8.1 Kcal/mol, respectively, in complexes with the spike protein of SARS-CoV-2. The root-mean-square deviation, solvent-accessible surface area, radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation. Thus, wet-lab validations are necessary to support these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA