Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Heliyon ; 10(4): e25420, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375259

RESUMO

Air pollution has been creating severe environmental crises in Dhaka. This city ranks at the top among the major cities of the world. A multidimensional study is needed to assess the severity of this crisis. This study aims to determine the sources of trace elements in PM2.5 and their effects on health. We measured concentrations of 15 trace elements in PM2.5 every hour for eight days using a well-equipped mobile air quality monitoring system integrated with an automatic sampling system (AQMS, Horiba, Japan). We analyzed the concentrations of the trace elements to identify their potential sources and diurnal variation and to compute the respiratory deposition dose of the trace elements to estimate the health risks they pose. The daily average concentration of PM2.5 was higher than the allowable limit set by the World Health Organization (WHO). Among the trace elements, sulfur had the highest concentration and vanadium was the lowest. We found out that concentrations of the elements were the highest during the middle of the day and the lowest during midnight. Four source profiles of PM2.5 were identified by positive matrix factorization (PMF). Soil dust with sulfur-rich petroleum contributed about 65 %, industrial and non-exhaust emissions about 5 % each, and heavy engine oil combustion about 25 % to air pollution. Air mass backward trajectory analysis indicated that Dhaka's air contains both local and transboundary pollution. According to the determined respiratory deposition dose of the elements, males had higher deposition than females during heavy exercise. Sulfur and vanadium have the highest and lowest respiratory deposition dose, respectively. The highest amount of deposition occurred in the upper airways. We expect that this study will help professionals develop effective strategies to prevent and mitigate the emission of air pollutants.

2.
Sci Total Environ ; 878: 163129, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001671

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particles constitute a topic of growing health concern. This study aims to calculate PAH concentrations, identify the source, assess the health risk from exposure to carcinogenic PAHs, and the respiratory deposition flux. PM10 and PM2.5 were collected in September 2019 in the urban, semi-urban, and semi-urban-industrial areas of Kuala Lumpur, Batu Pahat, and Bukit Rambai, respectively. A total of 18 PAHs from PM10 and 17 PAHs from PM2.5 were extracted using dichloromethane and determined using gas chromatography coupled with a flame ionization detector (GC-FID). The health risk assessment (HRA) calculated included B[a]P equivalent (B[a]Peq), lifetime lung cancer risk (LLCR), incremental lifetime cancer risk (ILCR), and respiratory deposition dose (RDD). The results show PAHs in PM10 recorded in Kuala Lumpur (DBKL), Batu Pahat (UTHM), and Bukit Rambai are 9.91, 8.45, and 9.57 ng/m3, respectively. The average PAHs in PM2.5 at the three sampling sites are 11.65, 9.68, and 9.37 ng/m3, respectively. The major source of PAHs obtained from the DRs indicates pyrogenic activities for both particle sizes. For PM10, the total B[a]Peq in DBKL, UTHM, and Bukit Rambai were 1.97, 1.82, and 2.32 ng/m3, respectively. For PM2.5 samples, the total B[a]Peq in DBKL, UTHM, and Bukit Rambai were 2.80, 2.33, and 2.57 ng/m3, respectively. The LLCR and ILCR show low to moderate risk for all age groups. The RDD of adults and adolescents is highest in both PM10 and PM2.5, followed by children, toddlers, and infants. Overall, we perceive that adults and adolescents living in the urban area of Kuala Lumpur are at the highest risk for respiratory health problems because of prolonged exposure to PAHs in PM10 and PM2.5, followed by children, toddlers, and infants.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Adolescente , Adulto , Humanos , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Estações do Ano , Lactente , Pré-Escolar , Criança
3.
Chemosphere ; 309(Pt 2): 136794, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36220426

RESUMO

Due to rapid urbanization and fast economic development, aerosol pollution is a serious environmental issue, especially in Bangladesh. Based on bioaccessibility and respiratory deposition doses (RDD), health risks of PM2.5 and PM10 bound 15 (fifteen) metals were investigated at fourteen urban sites (roadside, marketplace, industrial, and commercial areas). Sampling campaigns were conducted over four seasons (winter, summer, rainy, and autumn) from December 2020 to November 2021. A beta attenuation mass analyzer measured particulate matter concentrations in ambient air. The metals in PM fractions were analyzed by X-ray fluorescence spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). The airborne trace metals (Cd, As, Zn, Pb, Cr, Cu, Ni) with high enrichment factors indicate anthropogenic sources. The positive matrix factorization (PMF) categorized these elements as originating from automobile exhaust, industrial emissions, and solid waste/coal combustion, whereas the geologic elements came from earth crust/soil dust. During the winter, most of the air mass trajectories arrived from India across the land (82%) and Indo Gangetic Plain (IGP) region to the sampling sites, which may have aided in the transport of pollutants. The deposition flux of metals illustrated that compared to PM2.5, PM10 deposited a higher amount of metals in the upper airways (81.96%). In comparison, PM2.5 accumulates more elevated amounts of metals in alveolar regions (11.77%), due to the ability of fine particles to penetrate deeper into the lower pulmonary region. Among age groups, an adult inhales a higher amount of metals than a child, on average 0.103 mg and 0.08 mg of metals per day via PM2.5, respectively. Acute health impacts are caused by the deposited cancer-causing metals in alveolar tissue, which circulates through the bloodstream and affects several organs. Prolonged exposure to these carcinogenic metals poses significant health risks.


Assuntos
Poluentes Atmosféricos , Adulto , Criança , Humanos , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Estações do Ano , Monitoramento Ambiental , Resíduos Sólidos/análise , Bangladesh , Cádmio/análise , Chumbo/análise , Material Particulado/análise , Poeira/análise , Carvão Mineral/análise , Aerossóis/análise , Solo
4.
Environ Sci Pollut Res Int ; 29(11): 15849-15862, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34636003

RESUMO

Surface sediments along the Southern Terengganu coast (≤7 km from the coast) were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 USEPA priority polycyclic aromatic hydrocarbons (ΣPAH16) ranged from 2.59 to 155 ng g-1 and their respective alkylated ranged between 8.80 and 24.90 ng g-1. Traces of acephenanthrylene, benzo[c]phenanthrene, thiophenic PAH, and benzonaphthofuran were identified. PAH diagnostic ratios and cross-plots revealed that these sedimentary PAH compounds are derived mainly from pyrogenic sources, primarily from biomass burning and petroleum combustion residues with minor petrogenic input. The high correlations between pyrogenic PAHs to total PAHs (r >0.73, p <0.5), and the Bap/Bep ratio to total PAHs (r = 0.88, p <0.5), suggest that atmospheric deposition and urban runoff are the main deposition pathways. The concentrations of the PAHs in the southern South China Sea fall in the moderate contamination range of 100-1000 ng g-1.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Malásia , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
5.
Environ Geochem Health ; 44(10): 3377-3393, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34596792

RESUMO

The smaller particles that dominate the particle number concentration (PNC) in the ambient air only contribute to a small percentage of particulate matter (PM) mass concentration although present in high particle number concentration. These small particles may be neglected upon assessing the health impacts of the PM. Hence, the knowledge on the particle number concentration size distribution deserves greater attention than the particulate mass concentration. This study investigates the measurement of the particle mass concentrations (PM2.5) and PNC of 0.27 µm < Dp < 4.50 µm during the southwest (SW), inter-monsoon (IM) and northeast (NE) monsoons in the industrial-residential airshed of Skudai, Johor Bahru, Malaysia. The PM2.5 mass concentrations and PNC were measured using a multi-channel GRIMM Environmental Dust Monitor (GRIMM EDM-SVC 365) equipped with a global positioning system. Diurnal variations, statistical analysis and regression plots were utilised from a six-month hourly data set to examine the patterns of the PNC size distributions and its relationships with the PM2.5 mass concentration. The overall mean PM2.5 mass concentration was 21.85 µg m-3, with the 24 h mean values of 26.80 µg m-3, 26.08 µg m-3 and 13.76 µg m-3 for the SW, IM and NE monsoons, respectively. It was found that the hourly mean of PNC was recorded at the highest concentration during the SW monsoon (373.20 # cm-3). The particles in the accumulation mode (Dp < 1.0 µm) were the prevalent form of the particle number concentration (94-98%). The scatter plots between the PM2.5 mass concentration and particle number size distribution showed that the PNC mode of 0.27 < Dp < 1.0 µm has the highest correlation value of r2 = 0.87 due to the emission from the anthropogenic activities. The results of this study highlight the importance of the PNC measurement in the seasonal variations of the PM2.5 pollution, indicating the significance of the regional-scale emission control actions in the local air quality management.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poeira/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
6.
Environ Sci Pollut Res Int ; 28(42): 60209-60220, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34156627

RESUMO

This study aims to examine the relationship between daily temperature and mortality in the Klang Valley, Malaysia, over the period 2006-2015. A quasi-Poisson generalized linear model combined with a distributed lag non-linear model (DLNM) was used to estimate the association between the mean temperature and mortality categories (natural n=69,542, cardiovascular n= 15,581, and respiratory disease n=10,119). Particulate matter with an aerodynamic diameter below 10 µm (PM10) and surface ozone (O3) was adjusted as a potential confounding factor. The relative risk (RR) of natural mortality associated with extreme cold temperature (1st percentile of temperature, 25.2 °C) over lags 0-28 days was 1.26 (95% confidence interval (CI): 1.00, 1.60), compared with the minimum mortality temperature (28.2 °C). The relative risk associated with extremely hot temperature (99th percentile of temperature, 30.2 °C) over lags 0-3 days was 1.09 (95% CI: 1.02, 1.17). Heat effects were immediate whereas cold effects were delayed and lasted longer. People with respiratory diseases, the elderly, and women were the most vulnerable groups when it came to the effects of extremely high temperatures. Extreme temperatures did not dramatically change the temperature-mortality risk estimates made before and after adjustments for air pollutant (PM10 and O3) levels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Causas de Morte , Temperatura Baixa , Feminino , Temperatura Alta , Humanos , Malásia , Mortalidade , Temperatura
7.
Sci Total Environ ; 783: 146929, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088111

RESUMO

Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are toxic compounds derived from anthropogenic sources that stay in the environment for long periods. Ambient air has become the most important pathway for the transfer of PCDDs/PCDFs from emission sources to the environment. This review intends to summarise the information available on atmospheric PCDDs/PCDFs in the countries of Southeast Asia to provide a detailed description of the trends in PCDDs/PCDFs emissions, key sources, and levels in urban, rural, and industrial air as reported in peer-reviewed literature since 2000 and by the United Nations Environment Programme. As the largest country in Southeast Asia, Indonesia is the major PCDDs/PCDFs emitter, accounting for 72.81% of the total release of PCDDs/PCDFs in the air from all available inventories in this region, while Brunei Darussalam is the lowest emitter, contributing to less than 0.02%. Open burning processes have become the largest source of ambient PCDDs/PCDFs in the region (69.62%), followed by waste incineration (10.69%), and ferrous and non-ferrous metal production (8.78%). PCDDs/PCDFs levels in rural areas ranged between 10 and 38 fg TEQ m-3; however, where open burning waste has occurred, the levels rose to 12-29 times higher. In urban areas, ambient levels were 15 times greater than in rural areas, varying from 23 to 565 fg TEQ m-3. Atmospheric concentrations near industrial palm oil and waste incinerator sites were between 64 and 1530 fg TEQ m-3. The non-cancer risk of ambient exposure to PCDDs/PCDFs through inhalation is low among populations near facilities emitting PCDDs/PCDFs. The lack of local technical capacity, the high economic costs, and the lack of established human resource capacities have been the major challenges in conducting ambient PCDDs/PCDFs studies in most countries in the region.

8.
Environ Toxicol Pharmacol ; 86: 103666, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33895355

RESUMO

Metal contaminations in commercial fish have become a great public health concern worldwide including Bangladesh. The current study was conducted to provide preliminary evidence of nine metals in three commercially significant fish namely Pampus argenteus, Sardinella longiceps and Tenualosa ilisha collected from four coastal stations- Kuakata, Pathorghata, Cox's Bazar, and Pirojpur, and eight stations of five rivers- Padma, Meghna, Jamuna, Katcha, and Nobogonga in Bangladesh. High magnitudes of Pb (0.74-4.59 mg/kg ww), Cd (0.07-0.24 mg/kg ww), and Mn (0.45-2.03 mg/kg ww) were recorded in the sampling stations that exceeded the maximum permissible limits (MPL) proposed by different recognized organizations. Significant mean differences of metal concentrations were observed (p < 0.05) between species and stations. In fish samples, excessive metals accumulations were recorded from Kuakata (St.1) at the coastal area, and Nobogonga (St. 12) among the rivers. The health risk assessment (HRA) was carried out comprehensively via the estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and target cancer risk (TR) calculations. The outcomes of EDI, THQ, and HI suggest that chronic exposure to towering Pb content might pose potential health threats to inhabitants particularly living in highly polluted stations of the coastal area. In addition, the massive TR values of Cd intake through fish consumption from the coastal area might create cancer risks. Accordingly, the ingestion of metals contaminated fish portends chronic as well as acute health risks to Bangladeshi people living both at home and abroad.


Assuntos
Arsênio/análise , Exposição Dietética/análise , Peixes , Contaminação de Alimentos/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Adulto , Animais , Arsênio/toxicidade , Bangladesh , Bioacumulação , Monitoramento Biológico , Distúrbios Induzidos Quimicamente , Humanos , Metais Pesados/toxicidade , Medição de Risco , Rios , Água do Mar , Poluentes Químicos da Água/toxicidade
9.
Sci Total Environ ; 782: 146783, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838363

RESUMO

Meteorology over coastal region is a driving factor to the concentration of air particles and reactive gases. This study aims to conduct a research to determine the level of year-round air particles and the interaction of the meteorological driving factors with the particle number and mass in 2018, which is moderately influenced by Southeast Asian haze. We obtained the measurement data for particle number count (PNC), mass, reactive gases, and meteorological factors from a Global Atmospheric Watch (GAW) station located at Bachok Marine Research Center, Bachok, Kelantan, Malaysia. For various timeseries and correlation analyses, a 60-second resolution of the data has been averaged hourly and daily and visualized further. Our results showed the slight difference in particle behavior that is either measured by unit mass or number count at the study area. Diurnal variations showed that particles were generally high during morning and night periods. Spike was observed in August for PM2.5/PNC2.5 and PM10/PNC10 and in November for PMCoarse/PNCCoarse. From a polar plot, the particles came from two distinct sources (e.g., seaside and roadside) at the local scale. Regional wind vector shows two distinct wind-blown directions from northeast and southwest. The air mases were transported from northeast (e.g., Philippines, mainland China, and Taiwan) or southwest (e.g., Sumatra) region. Correlation analysis shows that relative humidity, wind direction, and pressure influence the increase in particles, whereas negative correlation with temperature is observed, and wind speed may have a potential role on the decline of particle concentration. The particles at the study area was highly influenced by the changes in regional wind direction and speed.

10.
Chemosphere ; 262: 127767, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32763576

RESUMO

This study aimed to determine the spatial distribution of PM2.5 and PM10 collected in four regions (North, Central, South and East Coast) of Peninsular Malaysia during the southwest monsoon. Concurrent measurements of PM2.5 and PM10 were performed using a high volume sampler (HVS) for 24 h (August to September 2018) collecting a total of 104 samples. All samples were then analysed for water soluble inorganic ions (WSII) using ion chromatography, trace metals using inductively coupled plasma-mass spectroscopy (ICP-MS) and polycyclic aromatic hydrocarbon (PAHs) using gas chromatography-mass spectroscopy (GC-MS). The results showed that the highest average PM2.5 concentration during the sampling campaign was in the North region (33.2 ± 5.3 µg m-3) while for PM10 the highest was in the Central region (38.6 ± 7.70 µg m-3). WSII recorded contributions of 22% for PM2.5 and 20% for PM10 mass, with SO42- the most abundant species with average concentrations of 1.83 ± 0.42 µg m-3 (PM2.5) and 2.19 ± 0.27 µg m-3 (PM10). Using a Positive Matrix Factorization (PMF) model, soil fertilizer (23%) was identified as the major source of PM2.5 while industrial activity (25%) was identified as the major source of PM10. Overall, the studied metals had hazard quotients (HQ) value of <1 indicating a very low risk of non-carcinogenic elements while the highest excess lifetime cancer risk (ELCR) was recorded for Cr VI in the South region with values of 8.4E-06 (PM2.5) and 6.6E-05 (PM10). The incremental lifetime cancer risk (ILCR) calculated from the PAH concentrations was within the acceptable range for all regions.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Indústrias , Malásia , Tamanho da Partícula , Estações do Ano , Análise Espacial , Oligoelementos/análise
11.
Chemosphere ; 263: 128030, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297051

RESUMO

Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) µgm-3 with a seasonal high during winter (DJF, 162 ± 71 µgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 µgm-3) with an annual mean of 170 (±69) µgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Poeira/análise , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
12.
Environ Sci Pollut Res Int ; 27(25): 31827-31840, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504432

RESUMO

The study aimed to determine eight hazardous heavy metals in surface water and sediment samples collected from the Naf River, Shah Porir Dwip (estuary), and mostly around Saint Martin's Island in the Bay of Bengal. The results of heavy metals in water samples were ranged as Pb 14.7-313.0, Cd 33.0-70.0, Cr < 11.0-37.0, Cu 38.0-57.0, Zn 26.8-69.2, Ni 102.0-285.0, and Hg 0.3-1.6 µg L-1. The concentrations of metals in sediment samples were ranged as Pb < 10.0-37.5, Cd 0.2-1.0, Cr < 5.0-30.1, Cu < 3.0-30.9, Zn 24.1-88.0, Ni < 4.0-48.3, As 0.1-7.3, and Hg < 0.01-0.08 mg kg-1 dw. Ni and Cr were strongly correlated, suggesting that this pair of metals might diffuse from a common origin. The contamination factor (Cif) demonstrated that sediment samples were mostly contaminated by Cd and slightly contaminated by Pb and Zn. The geoaccumulation index (Igeo) revealed considerable values for Cd on Saint Martin's Island. Cd as a single regulator posed moderate to considerable risk frequently among the sampling stations. Pollution load index (PLI) values remained below 1 (< 1), which indicated a decrease from baseline pollution value among all stations. However, potential ecological risk (PER) was graded for two stations (St1 and St13) with a moderate-risk zone due to the Cd contribution. However, shipping emission and lithogenic sources were the most predominant for heavy metals in the sediment, which were determined by applying the principal component analysis-absolute principal component score (PCA-APCS). Graphical abstract.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , Baías , China , Monitoramento Ambiental , Sedimentos Geológicos , Ilhas , Medição de Risco , Rios , Água
13.
Sci Total Environ ; 730: 139091, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32413602

RESUMO

The Southeast Asian (SEA) region is no stranger to forest fires - the region has been suffering from severe air pollution (known locally as 'haze') as a result of these fires, for decades. The fires in SEA region are caused by a combination of natural (the El Niño weather pattern) and manmade (slash-and-burn and land clearing for plantations) factors. These fires cause the emissions of toxic aerosols and pollutants that can affect millions of people in the region. Thus, this study aims to identify the impact of the SEA haze on the Southern region of the Malaysian Peninsula and Borneo region of East Malaysia using the entire air quality observation data at surface level in 2015. Overall, the concentration of PM10 was about two-fold higher during the haze period compared to non-haze period. The concentrations of CO, flux of CO and flux of BC were aligned with PM10 during the entire observation period. The wind field and cluster of trajectory indicated that the Southern Malaysian Peninsula and Borneo were influenced mainly from the wildfires and the combustion of peat soil in the Indonesian Borneo. This study finds that wildfires from Borneo impacted the Southern Malaysian Borneo more seriously than that from Sumatra region.

14.
Environ Monit Assess ; 192(6): 342, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32382809

RESUMO

Benzene, toluene, ethylbenzene and xylenes (BTEX) are well known hazardous volatile organic compounds (VOCs) due to their human health risks and photochemical effects. The main objective of this study was to estimate BTEX levels and evaluate interspecies ratios and ozone formation potentials (OFP) in the ambient air of urban Kuala Lumpur (KL) based on a passive sampling method with a Tenax® GR adsorbent tube. Analysis of BTEX was performed using a thermal desorption (TD)-gas chromatography mass spectrometer (GCMS). OFP was calculated based on the Maximum Incremental Reactivity (MIR). Results from this study showed that the average total BTEX during the sampling period was 66.06 ± 2.39 µg/m3. Toluene (27.70 ± 0.97 µg/m3) was the highest, followed by m,p-xylene (13.87 ± 0.36 µg/m3), o-xylene (11.49 ± 0.39 µg/m3), ethylbenzene (8.46 ± 0.34 µg/m3) and benzene (3.86 ± 0.31 µg/m3). The ratio of toluene to benzene (T:B) is > 7, suggesting that VOCs in the Kuala Lumpur urban environment are influenced by vehicle emissions and other anthropogenic sources. The average of ozone formation potential (OFP) value from BTEX was 278.42 ± 74.64 µg/m3 with toluene and xylenes being the major contributors to OFP. This study also indicated that the average of benzene concentration in KL was slightly lower than the European Union (EU)-recommended health limit value for benzene of 5 µg/m3 annual exposure.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Benzeno , Derivados de Benzeno , Humanos , Tolueno , Xilenos
15.
Chemosphere ; 255: 126932, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32402880

RESUMO

The aim of the present study was to investigate the potential sources of heavy metals in fine air particles (PM2.5) and benzene, toluene, ethylbenzene, and isomeric xylenes (BTEX) in gas phase indoor air. PM2.5 samples were collected using a low volume sampler. BTEX samples were collected using passive sampling onto sorbent tubes and analyzed using gas chromatography-mass spectrometry (GC-MS). For the lower and upper floors of the evaluated building, the concentrations of PM2.5 were 96.4 ± 2.70 µg/m3 and 80.2 ± 3.11 µg/m3, respectively. The compositions of heavy metals in PM2.5 were predominated by iron (Fe), zinc (Zn), and aluminum (Al) with concentration of 500 ± 50.07 ng/m3, 466 ± 77.38 ng/m3, and 422 ± 147.38 ng/m3. A principal component analysis (PCA) showed that the main sources of BTEX were originated from vehicle emissions and exacerbate because of temperature variations. Hazard quotient results for BTEX showed that the compounds were below acceptable limits and thus did not possess potential carcinogenic risks. However, a measured output of lifetime cancer probability revealed that benzene and ethylbenzene posed definite carcinogenic risks. Pollutants that originated from heavy traffic next to the sampling site contributed to the indoor pollution.


Assuntos
Monitoramento Ambiental/métodos , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Benzeno/análise , Derivados de Benzeno , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Tolueno/análise , Emissões de Veículos/análise , Xilenos/análise
16.
Environ Geochem Health ; 42(2): 531-543, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31376046

RESUMO

This study aimed to assess the effects of major ecotoxic heavy metals accumulated in the Buriganga and Turag River systems on the liver, kidney, intestine, and muscle of common edible fish species Puntius ticto, Heteropneustes fossilis, and Channa punctatus and determine the associated health risks. K was the predominant and reported as a major element. A large concentration of Zn was detected in diverse organs of the three edible fishes compared with other metals. Overall, trace metal analysis indicated that all organs (especially the liver and kidney) were under extreme threat because the maximum permissible limit set by different international health organizations was exceeded. The target hazard quotient and target cancer risk due to the trace metal content were the largest for P. ticto. Thus, excessive intake of P. ticto from the rivers Buriganga and Turag could result in chronic risks associated with long-term exposure to contaminants. Histopathological investigations revealed the first detectable indicators of infection and findings of long-term injury in cells, tissues, and organs. Histopathological changes in various tissue structures of fish functioned as key pointers of connection to pollutants, and definite infections and lesion types were established based on biotic pointers of toxic/carcinogenic effects. The analysis of histopathological alterations is a controlling integrative device used to assess pollutants in the environment.


Assuntos
Peixes , Metais Pesados/análise , Medição de Risco/métodos , Rios/química , Poluentes Químicos da Água/análise , Animais , Bangladesh , Peixes-Gato , Monitoramento Ambiental , Produtos Pesqueiros/análise , Contaminação de Alimentos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Metais Pesados/farmacocinética , Metais Pesados/toxicidade , Músculos/química , Músculos/efeitos dos fármacos , Distribuição Tecidual , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade
17.
Sci Total Environ ; 703: 135535, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767333

RESUMO

This study aimed to assess the concentrations and health effect of trace metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)] on the road dust of selected locations in the city of Kuala Lumpur. Sampling was conducted thrice at four locations, namely, Tun Razak Road, Raja Abdullah Road, Tunku Abdul Rahman (TAR) Road, and Ayer Molek Road. The concentrations of trace metals in road dust were analyzed by inductively coupled plasma mass spectrometry. TAR Road presented the highest Cd, Cu, Ni, and Pb contents compared with the other roads. The pollution level of trace metals in road dust was assessed by pollution index and pollution load index (PLI), showing that all studied locations were highly contaminated except Ayer Molek Road. Based on the PLI value, the sequence of pollution in descending order is as follows: TAR Road > Raja Abdullah Road > Tun Razak Road > Ayer Molek Road. Health risk assessment was performed to assess the health effects of carcinogenic and noncarcinogenic pollutants caused by the exposure to trace metals in road dust on adults and children. Based on the integrated hazard index values for children at all locations, >1 indicates a possible noncarcinogenic effect. All incremental lifetime cancer risk values for adult and children at all locations are within acceptable limits and are considered safe.


Assuntos
Poeira/análise , Exposição Ambiental/estatística & dados numéricos , Poluição Ambiental/estatística & dados numéricos , Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Cádmio , Criança , Cromo , Cidades , Cobre , Monitoramento Ambiental , Humanos , Malásia , Níquel , Medição de Risco , Oligoelementos , Zinco
18.
Chemosphere ; 237: 124451, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31394440

RESUMO

This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ±â€¯23.71 µg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ±â€¯0.45 µg/m3 to 6.20 ±â€¯3.51 µg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ±â€¯114.57 µg/m3) in comparison to petrol station (73.08 ±â€¯30.41 µg/m3), petrochemical industry (32.10 ±â€¯13.13 µg/m3) and airport (25.30 ±â€¯6.17 µg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.


Assuntos
Derivados de Benzeno/análise , Benzeno/análise , Monitoramento Ambiental/métodos , Medição de Risco , Tolueno/análise , Xilenos/análise , Benzeno/toxicidade , Derivados de Benzeno/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Malásia , Tolueno/toxicidade , Xilenos/toxicidade
19.
J Agric Food Chem ; 67(29): 8268-8278, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31283221

RESUMO

Species authentication of meat and fish products is crucial to safeguard public health, economic investment, and religious sanctity. We developed a heptaplex polymerase chain reaction assay targeting short amplicon length (73-198 bp) for the simultaneous detection and differentiation of cow, buffalo, chicken, cat, dog, pig, and fish species in raw and processed food using species-specific primers targeting mitochondrial cytb, ND5, and 16s rRNA genes. Assay validation of adulterated and various heat-treated meatball matrices showed excellent stability and sensitivity under all processing conditions. The detection limit was 0.01-0.001 ng of DNA under pure states and 0.5% meat in meatball products. Buffalo was detected in 86.7% (13 out of 15) of tested commercial beef products, while chicken, pork, and fish products were found to be pure. The developed assay was efficient enough to detect target species simultaneously, even in highly degraded and processed food products at reduced time.


Assuntos
Contaminação de Alimentos/análise , Produtos da Carne/análise , Reação em Cadeia da Polimerase/métodos , Animais , Búfalos/genética , Gatos/genética , Bovinos/genética , Galinhas/genética , Cães/genética , Peixes/genética , Suínos/genética
20.
Ecotoxicol Environ Saf ; 171: 290-300, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30612017

RESUMO

Rapid urbanisation in Malaysian cities poses risks to the health of residents. This study aims to estimate the relative risk (RR) of major air pollutants on cardiovascular and respiratory hospitalisations in Kuala Lumpur. Daily hospitalisations due to cardiovascular and respiratory diseases from 2010 to 2014 were obtained from the Hospital Canselor Tuanku Muhriz (HCTM). The trace gases, PM10 and weather variables were obtained from the Department of Environment (DOE) Malaysia in consistent with the hospitalisation data. The RR was estimated using a Generalised Additive Model (GAM) based on Poisson regression. A "lag" concept was used where the analysis was segregated into risks of immediate exposure (lag 0) until exposure after 5 days (lag 5). The results showed that the gases could pose significant risks towards cardiovascular and respiratory hospitalisations. However, the RR value of PM10 was not significant in this study. Immediate effects on cardiovascular hospitalisations were observed for NO2 and O3 but no immediate effect was found on respiratory hospitalisations. Delayed effects on cardiovascular and respiratory hospitalisations were found with SO2 and NO2. The highest RR value was observed at lag 4 for respiratory admissions with SO2 (RR = 1.123, 95% CI = 1.045-1.207), followed by NO2 at lag 5 for cardiovascular admissions (RR = 1.025, 95% CI = 1.005-1.046). For the multi-pollutant model, NO2 at lag 5 showed the highest risks towards cardiovascular hospitalisations after controlling for O3 8 h mean lag 1 (RR = 1.026, 95% CI = 1.006-1.047), while SO2 at lag 4 showed highest risks towards respiratory hospitalisations after controlling for NO2 lag 3 (RR = 1.132, 95% CI = 1.053-1.216). This study indicated that exposure to trace gases in Kuala Lumpur could lead to both immediate and delayed effects on cardiovascular and respiratory hospitalisations.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/efeitos adversos , Doenças Respiratórias/epidemiologia , População Urbana/estatística & dados numéricos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Malásia , Masculino , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Prevalência , Medição de Risco , Dióxido de Enxofre/análise , Dióxido de Enxofre/toxicidade , Urbanização , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA