Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Res Microb Sci ; 2: 100056, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841347

RESUMO

Reactive dyes are widely utilized in the textile industry due to their advantageous properties of vivid color, water-fastness, and simple application procedures with minimal energy usage. The toxicity of most azo dyes is a significant environmental concern, as effluents from dye processing and manufacturing sectors are known to be carcinogenic and mutagenic to numerous species. These issues are more grievous in Bangladesh, one of the largest exporters of apparel. This study aimed to isolate and identify potential fungal strains from textile effluent that are capable of degrading Reactive Red HE7B dye (a sulphonated reactive azo dye), a widely used dye in local thread dyeing industries. Dye degradation assay was performed in potato dextrose broth supplemented with 50 mg/l Reactive Red HE7B and the degradation rate was measured by a UV spectrophotometer. DNA extraction, quantification, PCR, internal transcribed spacer (ITS) sequencing, and phylogenetic analysis were performed to identify the selected fungi. Among the isolates, the three best performing strains TEF -3, TEF -4, and TEF -5 showed 97.41%, 93.12%, and 82.89% dye degrading efficacy after 96 h of incubation, respectively. All three strains, TEF-3, TEF-4, and TEF-5 showed similarity with Aspergillus salinarus (accession no. NR_157473.1) and the similarity percentages were 97.02, 96.95, and 95.28 respectively. Interestingly, this study probably the very first indication of textile dye degradation by Aspergillus salinarus strains. Thus, these fungal strains possess the prospectiveness to be utilized in the textile wastewater treatment plants, since the isolates demonstrated the substantial capacity (>80%) to degrade Reactive Red dye after 96 h of incubation.

2.
PLoS One ; 16(5): e0252295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043709

RESUMO

Stenotrophomonas maltophilia is a multidrug-resistant bacterium with no precise clinical treatment. This bacterium can be a vital cause for death and different organ failures in immune-compromised, immune-competent, and long-time hospitalized patients. Extensive quorum sensing capability has become a challenge to develop new drugs against this pathogen. Moreover, the organism possesses about 789 proteins which function, structure, and pathogenesis remain obscured. In this piece of work, we tried to enlighten the aforementioned sectors using highly reliable bioinformatics tools validated by the scientific community. At first, the whole proteome sequence of the organism was retrieved and stored. Then we separated the hypothetical proteins and searched for the conserved domain with a high confidence level and multi-server validation, which resulted in 24 such proteins. Furthermore, all of their physical and chemical characterizations were performed, such as theoretical isoelectric point, molecular weight, GRAVY value, and many more. Besides, the subcellular localization, protein-protein interactions, functional motifs, 3D structures, antigenicity, and virulence factors were also evaluated. As an extension of this work, 'RTFAMSSER' and 'PAAPQPSAS' were predicted as potential T and B cell epitopes, respectively. We hope our findings will help in better understating the pathogenesis and smoothen the way to the cure.


Assuntos
Proteínas de Bactérias/imunologia , Infecções por Bactérias Gram-Negativas , Proteoma/imunologia , Stenotrophomonas maltophilia/imunologia , Fatores de Virulência/imunologia , Vacinas Bacterianas/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos
3.
Mol Cell Probes ; 55: 101693, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388416

RESUMO

The sole objective of this research is to devise an epitope-based vaccine candidate as prophylaxis for the Crimean-Congo hemorrhagic fever virus (CCHFV) using the knowledge of immunoinformatics and structural biology. Importantly, CCHFV outbreaks have increased in several countries resulting in increased mortality up to 40% due to the lack of prospective medication and an efficient vaccine. In this study, we have used several immunoinformatic tools and servers to anticipate potent B-cell and T-cell epitopes from the CCHFV glycoprotein with the highest antigenicity. After a comprehensive evaluation, a vaccine candidate was designed using 6 CD8+, 3 CD4+, and 7 B-cell epitopes with appropriate linkers. To enhance the vaccine's efficiency, we added Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) to the vaccine as an adjuvant. The final construct was composed of a total of 468 amino acid residues. The epitope included in the construct showed 98% worldwide population coverage. Importantly, the construct appeared as antigenic, immunogenic, soluble, and non-allergenic in nature. To explore further, we modelled the three-dimensional (3D) structure of the constructed vaccine. Our chimeric vaccine showed stable and strong interactions for toll-like receptor 2 (TLR2) found on the cell surface. Moreover, the dynamics simulation of immune response showed elevated levels of cellular immune activity and faster clearance of antigen from the body upon repetitive exposure. Finally, the optimized codon (CAI≈1) ensured the marked translation efficiency of the vaccine protein in E. coli strain K12 bacterium followed by the insertion of construct DNA into the cloning vector pET28a (+). We believe that the designed vaccine chimera could be useful in vaccine development to fight CCHFV outbreaks.


Assuntos
Biologia Computacional , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Antígenos Virais/imunologia , Códon/genética , Simulação por Computador , Dissulfetos/metabolismo , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Glicoproteínas/imunologia , Humanos , Imunidade , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Vacinas de Subunidades Antigênicas/química
4.
Int J Pept Res Ther ; 26(4): 2089-2107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421065

RESUMO

Lassa virus (LASV) is responsible for a type of acute viral haemorrhagic fever referred to as Lassa fever. Lack of adequate treatment and preventive measures against LASV resulted in a high mortality rate in its endemic regions. In this study, a multi-epitope vaccine was designed using immunoinformatics as a prophylactic agent against the virus. Following a rigorous assessment, the vaccine was built using T-cell (NCTL = 8 and NHTL = 6) and B-cell (NLBL = 4) epitopes from each LASV-derived protein in addition with suitable linkers and adjuvant. The physicochemistry, immunogenic potency and safeness of the designed vaccine (~ 68 kDa) were assessed. In addition, chosen CTL and HTL epitopes of our vaccine showed 97.37% worldwide population coverage. Besides, disulphide engineering also improved the stability of the chimeric vaccine. Molecular docking of our vaccine protein with toll-like receptor 2 (TLR2) showed binding efficiency followed by dynamics simulation for stable interaction. Furthermore, higher levels of cell-mediated immunity and rapid antigen clearance were suggested by immune simulation and repeated-exposure simulation, respectively. Finally, the optimized codons were used in in silico cloning to ensure higher expression within E. coli K12 bacterium. With further assessment both in vitro and in vivo, we believe that our proposed peptide-vaccine would be potential immunogen against Lassa fever.

5.
J Biomol Struct Dyn ; 38(16): 4850-4867, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31709929

RESUMO

Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.Communicated by Ramaswamy H. Sarma.


Assuntos
Epitopos de Linfócito B , Epitopos de Linfócito T , Biologia Computacional , Escherichia coli , Flavobacteriaceae , Humanos , Recém-Nascido , Simulação de Acoplamento Molecular , Proteoma , Vacinas de Subunidades Antigênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA