Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 26(12): 1475-1483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970438

RESUMO

Objectives: The current study aimed to investigate the control and treatment of biofilm-producing isolates of Pseudomonas aeruginosa using silicon nanoparticles (SiNPs). Materials and Methods: Biofilm-producing isolates of P. aeruginosa were recovered from various food samples and identified through fluorescent green colony formation on selective and differential media, as well as the amplification of oprI and oprL genes. Tube methods, Congo-red agar method, and scanning electron microscopy (SEM) were used to study biofilm phenotypes. The effect of SiNPs was evaluated by broth dilution assay. Results: The biofilm assay revealed that these isolates formed biofilms on glass surfaces within 72 hr of incubation. Scanning electron micrographs showed that the biofilm communities were composed of multicellular clusters of P. aeruginosa encased in matrix material. However, these isolates were unable to form biofilms on SiNPs-coated surfaces. The results showed that the planktonic isolates of P. aeruginosa were comparatively sensitive to the antibacterial properties of SiNPs, with minimum inhibitory concentration (MIC) ranging from 100 to 200 µg/ml. Contrarily, the biofilms were found to be 500 times more tolerant to the highest concentration of SiNPs (MIC of 500 µg/ml) and were more resistant. Under static conditions, the sedimentation of SiNPs resulted in their ineffectiveness. However, under shaking conditions, the biofilms were effectively dispersed and the cells were lysed. The results showed that SiNPs were effective against both the planktonic and the metabolically inactive forms of P. aeruginosa. Conclusion: This study suggests that SiNPs could be a useful tool for preventing the formation of biofilms and removing pre-existing biofilms.

2.
Iran J Basic Med Sci ; 21(7): 760-769, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30140417

RESUMO

OBJECTIVES: This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. MATERIALS AND METHODS: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective media. Tube methods, Congo-red agar method, and scanning electron microscopy (SEM) were used to study biofilms phenotypes. The hydrophobicity of the strains was evaluated by the adhesion to apolar solvent. RESULTS: The results showed that E. coli dominated the pre-biofilm stage. It has been observed that E. coli adopted biofilm life much before S. aureus and P. aeruginosa. However, after adopting biofilm lifestyle, slowly and gradually, P. aeruginosa dominated the consortia and dispersed other stakeholders. The subject isolates of P. aeruginosa produce cis-2-decanoic acid to disperse or inhibit S. aureus and E. coli biofilms. Gas-chromatography and mass spectrometry results showed that cis-2-decanoic was higher in the co-culture condition and increased at late log-phase or at stationary phase. Although majority of S. aureus were unable to compete with P. aeruginosa, however, a minor population competed, survived, and persisted in biofilm consortia as small colony variants. The survivors showed higher expression of sigB and sarA genes. P. aeruginosa showed comparatively higher hydrophobic surface properties. CONCLUSION: Comparative analysis showed that cell surface hydrophobicity, growth rate, and small colony variants (SCVs) are correlated in biofilm consortia of the P. aeruginosa, S. aureus, and E. coli.

3.
Microb Pathog ; 61-62: 66-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711963

RESUMO

A total of 180 food borne isolates of methicillin resistant Staphylococcus aureus (MRSA) (oxacillin MICs 864 µg/ml) were used in the present study to investigate the effect of oxacillin on biofilm formation and its detachment process. Majority (98.3%) of these isolates were found to carry icaA gene. Out of 180 isolates 35.5% were identified as MRSA and 64.4% were methicillin sensitive S. aureus (MSSA). Biofilm studies by con-red agar and tube methods revealed that 57% of the MRSA isolates were biofilm producers. Polymerase chain reaction studies suggested that all of the biofilm positive MRSA isolates belong to SCCmec type IV and carry agr type II. This showed the strong association of SCCmec IV agr type II and biofilm formation in food borne MRSA. Conversely, only 13.7% of the MSSA isolates were biofilm positive and majority was found to carry agr type II. It has been noticed that oxacillin has regulatory effect on icaA expression and induce the icaA dependent polysaccharide intracellular adhesin (PIA) production and biofilm formation. This was confirmed by Real Time PCR studies of MRSA and MSSA isolates. Quantitative analysis showed that most of the MRSA isolates started biofilm formation after 24 h of incubation in the presence of sub-inhibitory concentration of oxacillin and achieved highest adhesion on glass slide after 48 h. The control in the absence of oxacillin showed slow conversion from planktonic to biofilm mode of growth (Table 1). Another novel feature of most of these biofilm producing isolates is the reduction in (Optical Density) OD, which is noticed after 48 h of incubation. Possibly, after 48 h oxacillin loses its toxicity or consumed the cells re-adapt to the planktonic state, possibly, by the activation of accessory gene regulator A (agrA) which has an important role in biofilm dispersal.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Oxacilina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA