Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400527, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689508

RESUMO

Cisplatin-associated acute kidney injury (AKI) is a severe clinical syndrome that significantly restricts the chemotherapeutic application of cisplatin in cancer patients. Ferroptosis, a newly characterized programmed cell death driven by the lethal accumulation of lipid peroxidation, is widely reported to be involved in the pathogenesis of cisplatin-associated AKI. Targeted inhibition of ferroptosis holds great promise for developing novel therapeutics to alleviate AKI. Unfortunately, current ferroptosis inhibitors possess low bioavailability or perform non-specific accumulation in the body, making them inefficient in alleviating cisplatin-associated AKI or inadvertently reducing the anti-tumor efficacy of cisplatin, thus not suitable for clinical application. In this study, a novel selenium nanomaterial, polyacrylic acid-coated selenium-doped carbon dots (SeCD), is rationally developed. SeCD exhibits high biocompatibility and specifically accumulates in the kidney. Administration of SeCD effectively scavenges broad-spectrum reactive oxygen species and significantly facilitates GPX4 expression by releasing selenium, resulting in strong mitigation of ferroptosis in renal tubular epithelial cells and substantial alleviation of cisplatin-associated AKI, without compromising the chemotherapeutic efficacy of cisplatin. This study highlights a novel and promising therapeutic approach for the clinical prevention of AKI in cancer patients undergoing cisplatin chemotherapy.

2.
Plant Physiol Biochem ; 208: 108509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461751

RESUMO

Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 µM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 µM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.


Assuntos
Melatonina , Melatonina/farmacologia , Cromo/toxicidade , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Fotossíntese , Clorofila/metabolismo
3.
J Environ Manage ; 355: 120448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422850

RESUMO

Salinity stress poses a significant challenge to agriculture, impacting soil health, plant growth and contributing to greenhouse gas (GHG) emissions. In response to these intertwined challenges, the use of biochar and its nanoscale counterpart, nano-biochar, has gained increasing attention. This comprehensive review explores the heterogeneous role of biochar and nano-biochar in enhancing salt resilience in plants and soil while concurrently mitigating GHG emissions. The review discusses the effects of these amendments on soil physicochemical properties, improved water and nutrient uptake, reduced oxidative damage, enhanced growth and the alternation of soil microbial communities, enhance soil fertility and resilience. Furthermore, it examines their impact on plant growth, ion homeostasis, osmotic adjustment and plant stress tolerance, promoting plant development under salinity stress conditions. Emphasis is placed on the potential of biochar and nano-biochar to influence soil microbial activities, leading to altered emissions of GHG emissions, particularly nitrous oxide(N2O) and methane(CH4), contributing to climate change mitigation. The comprehensive synthesis of current research findings in this review provides insights into the multifunctional applications of biochar and nano-biochar, highlighting their potential to address salinity stress in agriculture and their role in sustainable soil and environmental management. Moreover, it identifies areas for further investigation, aiming to enhance our understanding of the intricate interplay between biochar, nano-biochar, soil, plants, and greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Resiliência Psicológica , Gases de Efeito Estufa/análise , Solo/química , Carvão Vegetal/química , Agricultura , Cloreto de Sódio , Metano/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise
4.
Ecotoxicol Environ Saf ; 273: 116123, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394754

RESUMO

High levels of copper released in the soil, mainly from anthropogenic activity, can be hazardous to plants, animals, and humans. The present research aimed to estimate the suitability and effectiveness of rapeseed (Brassica napus L.) as a possible soil remediation option and to uncover underlying adaptive mechanisms A pot experiment was conducted to explore the effect of copper stress on agronomic and yield traits for 32 rapeseed genotypes. The copper-tolerant genotype H2009 and copper-sensitive genotype ZYZ16 were selected for further physiological, metabolomic, and transcriptomic analyses. The results exhibited a significant genotypic variation in copper stress tolerance in rapeseed. Specifically, the ratio of seed yield under copper stress to control ranged from 0.29 to 0.74. Furthermore, the proline content and antioxidant enzymatic activities in the roots were greater than those in the shoots. The accumulated copper in the roots accounted for about 50% of the total amount absorbed by plants; thus, the genotypes possessing high root volumes can be used for rhizofiltration to uptake and sequester copper. Additionally, the pectin and hemicellulose contents were significantly increased by 15.6% and 162%, respectively, under copper stress for the copper-tolerant genotype, allowing for greater sequestration of copper ions in the cell wall and lower oxidative stress. Comparative analysis of transcriptomes and metabolomes revealed that excessive copper enhanced the up-regulation of functional genes or metabolites related to cell wall binding, copper transportation, and chelation in the copper-tolerant genotype. Our results suggest that copper-tolerant rapeseed can thrive in heavily copper-polluted soils with a 5.85% remediation efficiency as well as produce seed and vegetable oil without exceeding food quality standards for the industry. This multi-omics comparison study provides insights into breeding copper-tolerant genotypes that can be used for the phytoremediation of heavy metal-polluted soils.


Assuntos
Brassica napus , Brassica rapa , Poluentes do Solo , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Cobre/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Melhoramento Vegetal , Brassica rapa/metabolismo , Solo
5.
Chemosphere ; 350: 141120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199502

RESUMO

Salt stress profoundly impacts sweetpotato production. Exogenous glutathione (GSH) and melatonin (MT) promoted plant growth under stress, but their specific roles and mechanisms in sweetpotato salt tolerance need exploration. This study investigated GSH and MT's regulatory mechanisms in sweetpotato under salt stress. Salt stress significantly reduces both growth and biomass by hindering photosynthesis, root traits, K+ content, and K+/Na+ balance, leading to oxidative stress and excessive hydrogen peroxide (H2O2), superoxide ion (O2•-), and malondialdehyde (MDA) production and Na+ accumulation. Nevertheless, GSH (2 mM) and MT (25 µM) pre-treatments effectively mitigated salt-induced oxidative damage and protected the plasma membrane. They reduced osmotic pressure by enhancing K+ uptake, K+/Na+ regulation, osmolyte accumulation, and reducing Na+ accumulation. Improved stomatal traits, chloroplast and grana lamella preservation, and maintenance of mesophyll cells, cell wall, and mitochondrial structure were observed with GSH and MT pre-treatments under salt stress, therefore boosting the photosynthetic system and enhancing plant growth and biomass. Moreover, the findings also indicate that the positive outcomes of GSH and MT pre-treatments result from elevated antioxidant levels, enhanced enzymatic activity, and upregulated expression of sodium hydrogen exchanger 2 (NHX2), K+transporter 1 (AKT1), and cation/H+exchanger (CHX), CBL-interacting protein kinase 1 (CIPK1), and antioxidant enzyme genes. These mechanisms enhance structural stability in photosynthesis and reduce salt stress. Evidently, MT pre-treatment exhibited superior effects compared to GSH. These findings provide a firm theoretical basis for employing GSH and MT to enhance salt tolerance in sweetpotato cultivation.


Assuntos
Melatonina , Melatonina/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Tolerância ao Sal , Peróxido de Hidrogênio/metabolismo , Glutationa/metabolismo , Fotossíntese
6.
Front Plant Sci ; 14: 1120755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025146

RESUMO

In recent years, the development and utilization of saline land for rice cultivation have effectively expanded grain productivity. Rice is a salt-sensitive crop, and the increasing salinity problem threatens rice yield and quality. Therefore, we conducted open field experiments to study the effect of salinity on different growth stages of rice. Irrigating saline treatment was conducted at three different growth stages: irrigating saline from the regreening stage to the panicle initiation stage (S1), irrigating saline from the panicle initiation stage to the flowering stage (S2), and irrigating saline from the flowering stage to the maturity stage (S3). Each treatment period lasted for about 30 days. At the same time, irrigating saline water from the regreening stage to the maturity stage (S4) treatment was added in 2022 to explore the performance of salt stress during the whole growth period of rice. Based on the treatment of these different saline irrigation growth periods, three saline concentrations were incorporated, including salinity 0‰ (T1), 3‰ (T2), and 6‰ (T3) concentrations. No irrigating saline during the whole growth period was also used as a control (CK). The results indicated that rice grain yield and quality were most sensitive to saline treatment during S1 among the three stress periods. At the S1 stage, salinity mainly reduced the nitrogen uptake, resulting in stunted plant growth, reducing tillering, yield, and yield components, and deteriorating the rice quality. Compared to the control, IEN (grain yield over the total amount of N uptake in plants at maturity) was more sensitive at the S1 stage than S2 and S3 stages under salinity. Furthermore, the findings of our study suggest that under salinity, rice growth is not only directly affected by the higher sodium (Na+) content in plants, but the higher concentration of Na+ reduced the ability of plants to uptake nitrogen. Thus, more attention should be paid to the field management of the S1 stage, the most sensitive stage during rice cultivation in salinized areas. It is necessary to avoid salt damage to rice during this period and ensure irrigation with precious freshwater resources.

7.
Chemosphere ; 310: 136911, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270526

RESUMO

Salt and drought stress are major environmental issues world-widely. These stresses can result in failures of seed germination, limiting agricultural production. New approaches are needed to increase crop production, ensuring food safety, quality, and agriculture sustainability. Nanopriming (priming seeds with nanomaterials) is an emerging seed technology improving crop production under the drastic climate change associated with stress factors. The present review not only provided an overview of nanopriming achieved salt and drought tolerance but also tried to discuss the behind mechanisms. We argued that the physico-chemical properties of the nanomaterials are key factors affecting their negative or positive effects on seed germination in terms of seed nanopriming. Furthermore, we highlighted the possible critical role of seed coat anatomy in effective nanopriming, in terms of saving costs and reducing biosafety issues. This review aims to help researchers to better understand and follow this fast-developing, cost-effective, and environmentally friendly research area.


Assuntos
Germinação , Nanoestruturas , Secas , Salinidade , Sementes , Nanoestruturas/toxicidade , Cloreto de Sódio/farmacologia
8.
Chemosphere ; 308(Pt 3): 136466, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122746

RESUMO

Heavy metals (HMs) accumulation in soil poses a severe threat worldwide for soil, plants, and humans. The accumulation of HMs in soil and uptake by plants leads to disrupt physiological and biochemical metabolisms. As a potential and sustainable soil amendment, biochar has attained huge attention to reduce HMs toxicity in soil and improve plant growth influenced by HMs stress. Despite an array of research studies, there is a lack of knowledge on how biochar interacts with HMs, moderate plant defence system, induce HMs stress signals pathways and promote plant growth. At first, the review highlights the possible effects of HMs on soil and plant and their consequences on plant signaling network. Secondly, the biochar's impact on soil physiochemical properties and the sorption of HMs on biochar surface through direct and indirect mechanisms are reviewed. Finally, the review shows the key roles of biochar in soil improvement to enhance plant growth and signaling response to HMs by enhancing the activities of antioxidants and reducing chlorophyll injury, reactive oxygen species (ROS) accumulation, and cell membrane degradation under HMs stress. However, future studies are needed to evaluate the role of biochar in diverse climatic conditions as well as the long-term effects of biochar on HMs persistency in soil and crop productivity. This review will provide new avenues for future studies to address and quantify the advancement in biochar's role in alleviating plant's HMs stress on a sustainable basis.


Assuntos
Metais Pesados , Poluentes do Solo , Antioxidantes , Carvão Vegetal/química , Clorofila , Produção Agrícola , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Plantas , Espécies Reativas de Oxigênio , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
9.
Glob Chall ; 6(7): 2200025, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35860396

RESUMO

Soil salinity is a major issue limiting efficient crop production. Seed priming with nanomaterials (nanopriming) is a cost-effective technology to improve seed germination under salinity; however, the underlying mechanisms still need to be explored. Here, polyacrylic acid coated nanoceria (cerium oxide nanoparticles) (PNC, 9.2 nm, -38.7 mV) are synthesized and characterized. The results show that under salinity, PNC priming significantly increases rapeseed shoot length (41.5%), root length (93%), and seedling dry weight (78%) compared to the no-nanoparticle (NNP) priming group. Confocal imaging results show that compared with NNP group, PNC priming significantly reduces reactive oxygen species (ROS) level in leaf (94.3% of H2O2, 56.4% of •O2 -) and root (38.4% of H2O2, 41.3% of •O2 -) of salt stressed rapeseed seedlings. Further, the results show that compared with the NNP group, PNC priming not only increases salicylic acid (SA) content in shoot (51.3%) and root (78.4%), but also upregulates the expression of SA biosynthesis related genes in salt stressed rapeseed. Overall, PNC nanopriming improved rapeseed salt tolerance is associated with both the increase of ROS scavenging ability and the increase of salicylic acid. The results add more information to understand the complexity of mechanisms behind nanoceria priming improved plant salt tolerance.

10.
Front Plant Sci ; 13: 853449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360339

RESUMO

The amendment of biochar has been proposed to improve soil fertility and crop yield. However, consolidated information lacks explaining the role of biochar on soil and plant enzymatic activities involved in nutrients cycling in soil and accumulation in plants improving utilization of applied inorganic fertilizer and crop growth. In the current study, we evaluated the integral effects of biochar levels (B0:0, B15:15, B3:30, and B60:60 t ha-1) and nitrogen fertilizer levels (N0:0, N75:75, N225:225, and N450:450 kg ha-1) on soil physicochemical properties, enzymatic activities, nitrogen use efficiency (NUE) and grain yield of rapeseed for 2 years in the pots during 2020 and 2021. The findings revealed that compared to control (B0 + N0), a combination of B30 + N450 increased soil urease activity by 73 and 75%, and B60 + N450 increased activities of soil catalase by 17 and 16%, and B60 + N225 increased alkaline phosphatase by 17 and 19%, respectively, in the first and second year. Moreover, a single application of high nitrogen at 450 kg ha-1 reduced the activities of plant nitrogen metabolism-related enzymes, however; the integration of biochar at 30 t ha-1 compensated the high nitrogen toxicity and improved the activities of nitrate reductase (NR), nitrite reductase NIR, glutamate synthase (GS) and glutamine synthetase (GOGAT) at seedling stage (SS) and flowering stage (FS) in both years. The integration of biochar at 30 t ha-1 with nitrogen at 450 kg ha-1 induced synergetic effects on rapeseed growth through sorption of excessive nitrogen in soil and significantly improved the plant height up to 11 and 18%, pods plant-1 39 and 32% and grain yield plant-1 54 and 64%, respectively, during the first and second year. Moreover, biochar at 15 t ha-1 along with nitrogen at 225 kg ha-1 resulted in the highest NUE of 29% in both years suggesting that biochar can also offset the deficiency of lower nitrogen. This study highlighted the ameliorative effect of biochar suppressing high nitrogen toxicity and decreasing lower nitrogen deficiency effects on rapeseed growth by improving nitrogen use efficiency via enhancing soil conditions, enzymatic activities and soil nitrogen utilization potential and thus improving rapeseed growth and yield.

11.
J Nanobiotechnology ; 19(1): 276, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530815

RESUMO

BACKGROUND: Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. RESULTS: Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2- in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control. CONCLUSIONS: Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.


Assuntos
Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , alfa-Amilases/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Cério/química , Nanopartículas Metálicas/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Potássio/química , Potássio/metabolismo , Sementes/efeitos dos fármacos , Sementes/enzimologia , Sementes/metabolismo , Sódio/química , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Superóxido Dismutase/metabolismo
12.
Antioxidants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439475

RESUMO

Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.

13.
Ecotoxicol Environ Saf ; 185: 109706, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561073

RESUMO

Chromium (Cr) is becoming a potential pollutant with the passage of time. Higher intake of Cr does not only affect the productivity of crops, but also the quality of food produced in Cr polluted soils. In the past, foliar application of Fe is widely studied regarding their potential to alleviate Cr toxicity. However, limited information is documented regarding the combined use of PGPR and foliar Fe. Therefore, the current study was conducted to screen Cr tolerant PGPR and examine effect of foliar Fe with and without Cr tolerant PGPR under Cr toxicity (50 and 100 mg kg-1) in maize (Zea mays) production. Out of 15, two Cr tolerant PGPR were screened, identified (Agrobacterium fabrum and Leclercia adecarboxylata) and inoculated with 500 µM Fe. Results confirmed that Agrobacterium fabrum + 500 µM Fe performed significantly best in improving dry weight of roots and shoot, plant height, roots and shoot length and plant leaves in maize under Cr toxicity. A significant increase in chlorophyll a (51.5%), b (55.1%) and total (32.5%) validated the effectiveness of A. fabrum + 500 µM Fe to alleviate Cr toxicity. Improvement in intake of N (64.7%), P (70.0 and 183.3%), K (53.8% and 3.40-fold) in leaves and N (25.6 and 122.2%), P (25.6 and 122.2%), K (33.3% and 97.3%) in roots of maize at Cr50 and Cr100 confirmed that combined application of A. fabrum with 500 µM Fe is a more efficacious approach for alleviation of Cr toxicity and fortification of Fe comparative to sole foliar application of 500 µM Fe.


Assuntos
Agrobacterium/enzimologia , Carbono-Carbono Liases/metabolismo , Cromo/toxicidade , Enterobacteriaceae/enzimologia , Ferro/farmacologia , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Agrobacterium/efeitos dos fármacos , Clorofila A/metabolismo , Enterobacteriaceae/efeitos dos fármacos , Ferro/metabolismo , Paquistão , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
14.
Plant Physiol Biochem ; 135: 499-510, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30459081

RESUMO

Food security is confronted by major threats from crop yield stagnation and global climate change. The benefits of phenotypic plasticity across environments for given crop genotypes are thought to be imperative for high-yielding cropping systems. Given that 3D modeling is increasingly recognized for dissecting crop phenotypic plasticity, it requires an assessment of the potential benefits of architectural adaptation of super rice to different agronomic practices. In this study, we focused on a comprehensive evaluation of the phenotypic plasticity of super rice on the aspects of 3D architectural "reoptimization," photosynthetic productivity, nitrogen economy, and grain yield. A super rice phenotype in superhigh-yielding practice (SH) displays a "reoptimized" morphogenesis in the leaf vertical dispersion and orientation in comparison to that in Farmer's practice (FP). Specifically, a super rice phenotype in SH is provided with a high cumulative rate and peaks of leaf area, increasing the distribution of high leaf inclination angles in comparison to that in FP, particularly in the upper parts of the canopy. These "reoptimizations" sustained profits in light environment within a canopy, leaf area duration, photosynthetic light harvest, and light utilization efficiency and were coordinated with improving nitrogen uptake and assimilation. The current literature indicates that the agronomic plasticity of super rice in architectural "reoptimization" is a promising perspective for high yield formation. Our results suggest that more emphasis should be placed upon agronomic adaptation strategies for super rice across diverse genotypes and environments to further improve crop establishment and photosynthetic productivity.


Assuntos
Produção Agrícola , Oryza/anatomia & histologia , Melhoramento Vegetal , Folhas de Planta/anatomia & histologia , Aclimatação , Produção Agrícola/métodos , Imageamento Tridimensional , Nitrogênio/metabolismo , Oryza/metabolismo , Fotossíntese , Melhoramento Vegetal/métodos
15.
Plant Physiol Biochem ; 132: 345-355, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30257236

RESUMO

Soil co-contamination with lead (Pb) and cadmium (Cd) is a tenacious risk to crop production globally. The current experiment observed the roles of amendments [biochar (BC), slag (SL), and ferrous manganese ore (FMO)] for enhancing Pb and Cd tolerance in sesame (Sesamum indicum L.). Our results revealed that application of amendments significantly enhanced the nutrient level of sesame seedlings developed under extreme Pb and Cd conditions. The higher Pb and Cd-tolerance in sesame encouraged by amendments might be credited to its capability to restrict Pb and Cd uptake and decreased oxidative damage induced by Pb and Cd that is also demonstrated by lesser production of hydrogen peroxide (H2O2), malondialdehyde (MDA), and reduced electrolyte leakage (EL) in plant biomass. The added amendments relieved Pb and Cd toxicity and improved photosynthetic pigments, soluble protein, and proline content. Not only this amendments also decreased the antioxidant bulk, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in sesame plants compared to control when exposed to Pb and Cd. Moreover, the added amendments = down-regulated the genes expression which regulate the SOD, POD, and CAT activity in sesame under Pb and Cd-stress. Furthermore, supplementation of amendments to the soil, reduced the bio accessibility (SBET), leachability (TCLP), and mobility (CaCl2) of Pb and Cd. Collectively, our findings conclude that the application of amendments enhanced sesame tolerance to Pb and Cd stress by restricting Pb and Cd accumulation, maintained photosynthetic presentation and dropped oxidative loss through enhanced antioxidant system, thus signifying amendments as an operational stress regulators in modifying Pb and Cd-toxicity that is highly important economically in all crops including sesame.


Assuntos
Cádmio/toxicidade , Carvão Vegetal/farmacologia , Poluição Ambiental , Chumbo/toxicidade , Sesamum/crescimento & desenvolvimento , Sesamum/metabolismo , Solo/química , Antioxidantes/metabolismo , Biomassa , Cloreto de Cálcio/química , Condutividade Elétrica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sesamum/efeitos dos fármacos , Sesamum/genética , Poluentes do Solo/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico/efeitos dos fármacos
16.
Plant Sci ; 271: 40-51, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29650156

RESUMO

To understand the influence of temperature on floral initiation and to reveal the relationship between floral bud development and yield potential of rapeseed (Brassica napus L.), early- ("1358"), intermediate- ("Zhongshuang No.11") and late- ("Zheshuang No.8") maturity genotypes were sown on different sowing dates under field conditions during four crop seasons. A multiplicative model was introduced to distinguish and quantify the effects of photoperiod and temperature on pre-floral initiation phase. Parameters in this model showed that early-maturity genotype was more sensitive to photoperiod; while late-maturity genotype was more sensitive to vernalization. The relationships between cumulative temperature and mean temperature of pre-floral initiation phase could be well descried by exponential equation. The developmental rate of pre-floral initiation phase against mean daily temperature displayed an asymmetrical distribution, and it decreased rapidly when the mean temperature exceeded the optimum. Leaf primordia differentiated from the shoot apical meristem showed significant linear relationship with the thermal time at pre-floral initiation phase; dynamic change of floral bud differentiated from the shoot apical meristem robustly fitted to a sigmoidal logistic curve. According to the fitted logistic equation, the maximum differentiation rate varied from 1.7 to 4.1 per 10 °Cd due to different sowing dates and genotypes. Averaged across growing seasons, sowing dates and genotypes, bud degeneration rate was 33% on the main raceme, and varied from 58% to 99% on the seven primary branches. The yield showed a significant correlation with floral bud number although the latter showed serious degeneration. In conclusion, the floral bud quantity largely determines rapeseed yield, and thus the genotypes with strong vernalization requirement should be planted early to extend the vegetative stage to achieve more fertile floral buds while the genotypes with weak vernalization requirement should be planted late to avoid flowering in chilling environment.


Assuntos
Brassica napus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Brassica napus/fisiologia , Modelos Teóricos , Fotoperíodo , Folhas de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA