Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7550, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555319

RESUMO

This research aimed to study on nanocellulose production from palm bunch using process design and cost analysis. Choline chloride based deep eutectic solvent pretreatment was selected for high-purity cellulose separation at mild condition, followed by nano-fibrillation using mechanical treatment. Three types of choline chloride-based deep eutectic solvents employing different hydrogen-bond donors (HBDs) namely lactic acid, 1,3-butanediol and oxalic acid were studied. The optimal cellulose extraction condition was choline chloride/lactic acid (ChLa80C) pretreatment of palm empty bunch at 80 °C followed by bleaching yielding 94.96%w/w cellulose content in product. Size reduction using ultrasonication and high-pressure homogenization produced nanocellulose at 67.12%w/w based on cellulose in raw material. Different morphologies of nanocellulose were tunable in the forms of nanocrystals, nano-rods and nanofibers by using dissimilar deep eutectic solvents. This work offered a sustainable and environmentally friendly process as well as provided analysis of DES pretreatment and overview operating cost for nanocellulose production. Application of nanocellulose for the fabrication of highly functional and biodegradable material for nanomedicine, electronic, optical, and micromechanical devices is achievable in the near future.

2.
Polymers (Basel) ; 16(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337332

RESUMO

Huge amounts of noxious chemicals from coal and petrochemical refineries and pharmaceutical industries are released into water bodies. These chemicals are highly toxic and cause adverse effects on both aquatic and terrestrial life. The removal of hazardous contaminants from industrial effluents is expensive and environmentally driven. The majority of the technologies applied nowadays for the removal of phenols and other contaminants are based on physio-chemical processes such as solvent extraction, chemical precipitation, and adsorption. The removal efficiency of toxic chemicals, especially phenols, is low with these technologies when the concentrations are very low. Furthermore, the major drawbacks of these technologies are the high operation costs and inadequate selectivity. To overcome these limitations, researchers are applying biological and membrane technologies together, which are gaining more attention because of their ease of use, high selectivity, and effectiveness. In the present review, the microbial degradation of phenolics in combination with intensified membrane bioreactors (MBRs) has been discussed. Important factors, including the origin and mode of phenols' biodegradation as well as the characteristics of the membrane bioreactors for the optimal removal of phenolic contaminants from industrial effluents are considered. The modifications of MBRs for the removal of phenols from various wastewater sources have also been addressed in this review article. The economic analysis on the cost and benefits of MBR technology compared with conventional wastewater treatments is discussed extensively.

3.
Sci Technol Adv Mater ; 24(1): 2260298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859865

RESUMO

Carbon dots (CDs) are a new class of nanomaterials exhibiting high biocompatibility, water solubility, functionality, and tunable fluorescence (FL) property. Due to the limitations of batch hydrothermal synthesis in terms of low CDs yield and long synthesis duration, this work aimed to increase its production capacity through a continuous flow reactor system. The influence of temperature and time was first studied in a batch reactor for glucose, xylose, sucrose and table sugar precursors. CDs synthesized from sucrose precursor exhibited the highest quantum yield (QY) (175.48%) and the average diameter less than 10 nm (~6.8 ± 1.1 nm) when synthesized at 220°C for 9 h. For a flow reactor system, the best condition for CDs production from sucrose was 1 mL min-1 flow rate at 280°C, and 0.2 MPa pressure yielding 53.03% QY and ~ 6.5 ± 0.6 nm average diameter (6.6 mg min-1 of CDs productivity). CDs were successfully used as ciprofloxacin (CP) nanocarrier for antimicrobial activity study. The cytotoxicity study showed that no effect of CDs on viability of L-929 fibroblast cells was detected until 1000 µg mL-1 CDs concentration. This finding demonstrates that CDs synthesized via a flow reactor system have a high zeta potential and suitable surface properties for nano-theranostic applications.

4.
RSC Adv ; 13(32): 22630-22638, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37501775

RESUMO

The current study employs nanoengineering diatom and TiO2 NPs to form diatom-Si-TiO2 nanoengineered structures to fabricate a dye sensitized solar cell (DSSC) (DsTnas-DSSC). This was characterized and spin coated on a Fluorine-doped Tin Oxide (FTO) anode plate. The counter cathode was prepared by spin coating graphene oxide on a FTO glass plate and using Lugol's iodine as an electrolyte. The power density of DsTnas-DSSC was estimated with different natural dyes in comparison to conventional photosensitive ruthenium dye. It was found that the natural dyes extracted from plants and microalgae show significant power efficiencies in DSSC. The percentage efficiency of maximum power densities (PDmax) of DsTnas-DSSC obtained with photosensitive dyes were 9.4% with synthetic ruthenium dye (control) and 7.19% > 4.08% > 0.72% > 0.58% > 0.061% from natural dyes found in Haematococcus pluvialis (astaxanthin) > Syzygium cumini (anthocyanin) > Rosa indica (anthocyanin) > Hibiscus rosa-sinensis (anthocyanin) > Beta vulgaris (betalains), respectively. Among all the natural dyes used, the PDmax for the control ruthenium dye was 6.164 mW m-2 followed by the highest in astaxanthin natural dye from Haematococcus pluvialis (5.872 mW m-2). Overall, the use of natural dye DsTnas-DSSC makes the fuel cell low cost and an alternative to conventional expensive, metal and synthetic dyes.

5.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047002

RESUMO

Textile industries currently face vast challenges for the active removal of colored wastewater. Indeed, sustainable, recyclable, and green approaches are still lacking to achieve this aim. Thus, the present study explored the utilization of highly functional, green, recyclable, fully bio-based, and cost-effective composite membranes from post-consumer cotton fabrics and palm waste for wastewater treatment purposes. Highly functional cellulose nanofibers (CNF) were produced from waste cotton fabrics and filter paper using an acid hydrolysis technique. The yield of nanofibers extracted from waste cotton fabrics and filter paper was 76.74 and 54.50%, respectively. The physical, chemical, and structural properties of nanofibers were studied using various advanced analytical techniques. The properties of isolated nanofibers were almost similar and comparable to those of commercial nanofibers. The surface charge densities were -94.0, -80.7, and -90.6 mV for the nanofibers of palm waste, cotton fibers, and filter paper, respectively. After membrane fabrication using vacuum and hot-pressing techniques, the characteristics of the membrane were analyzed. The results showed that the average pore size of the palm-waste membrane was 1.185 nm, while it was 1.875 nm for membrane from waste cotton fibers and filter paper. Congo red and methylene blue dyes were used as model solutions to understand the behavior of available functional groups and the surface ζ-potential of the membrane frameworks' interaction. The membrane made from palm waste had the highest dye removal efficiency, and it was 23% for Congo red and 44% for methylene blue. This study provides insights into the challenges associated with the use of postconsumer textile and agricultural waste, which can be potentially used in high-performance liquid filtration devices for a more sustainable society.


Assuntos
Corantes , Vermelho Congo , Corantes/química , Azul de Metileno , Celulose/química , Fibra de Algodão
6.
Inflammopharmacology ; 30(5): 1729-1743, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35939220

RESUMO

OBJECTIVE: The present study was designed to explore the potential anti-inflammatory and anti-arthritic effects of ellagic acid (EA) in collagen-induced arthritis (CIA). METHODS: CIA rats were treated with MTX (0.25 mg/kg body wt.) and EA (50 mg/kg b.wt.) for a period of 20 days. The effects of treatment in the rats were assessed biochemically by analyzing inflammatory mediators (NF-kB, iNOS, TNF-α, IL-1ß, IL-6 and IL-10) and oxidative stress related parameters (MPO, NO, LPO, catalase, SOD, GSH). In addition, we also assessed the expression of some inflammatory mediators TNF-α, CD8 + though immunohistochemistry in the joint tissue. RESULTS: In the present study, we found expression and synthesis of transcription factor NF-kB was prominent in CIA rats. In addition, main pro-inflammatory cytokines such as TNF-α, IL-1ß, IL-6, and the anti-inflammatory IL-10, was also stand out. Further, reactive oxygen/nitrogen species was also elevated in CIA rats. Treatment with EA ameliorates all the above mentioned inflammatory and oxidative stress related parameters to near normal. Further, we also confirmed the expression of TNF-α, CD8+ T cells through immunohistochemistry was mitigates in joint tissue of EA treated rats. We find EA significantly inhibited the developmental phase of arthritis. CONCLUSION: These results suggest that EA act as potent anti-arthritic and anti-inflammatory agent that could be used as a tool for the development of new drug for the treatment of arthritis.


Assuntos
Artrite Experimental , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Ácido Elágico/efeitos adversos , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Nitrogênio/efeitos adversos , Oxigênio/efeitos adversos , Fosforilação , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Chemosphere ; 305: 135371, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35724717

RESUMO

Discharge of untreated or partially treated toxic dyes containing wastewater from textile industries into water streams is hazardous for environment. The use of heavy metal(s) rich dyes, which are chemically active in azo and sulfur content(s) has been tremendously increasing in last two decades. Conventional physical and chemical treatment processes help to eliminate the dyes from textile wastewater but generates the secondary pollutants which create an additional environmental problem. Microalgae especially the diatoms are promising candidate for dye remediation from textile wastewater. Nanoporous diatoms frustules doped with nanocomposites increase the wastewater remediation efficiency due to their adsorption properties. On the other hand, microalgae with photosynthetic microbial fuel cell have shown significant results in being efficient, cost effective and suitable for large scale phycoremediation. This integrated system has also capability to enhance lipid and carotenoids biosynthesis in microalgae while simultaneously generating the bioelectricity. The present review highlights the textile industry wastewater treatment by live and dead diatoms as well as microalgae such as Chlorella, Scenedesmus, Desmodesmus sp. etc. This review engrosses applicability of diatoms and microalgae as an alternative way of conventional dye removal techniques with techno-economic aspects.


Assuntos
Chlorella , Diatomáceas , Microalgas , Biomassa , Corantes/química , Águas Residuárias/química
8.
Environ Res ; 212(Pt D): 113454, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597291

RESUMO

Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Microalgas , Corantes/metabolismo , Poluentes Ambientais/metabolismo , Microalgas/metabolismo , Águas Residuárias
9.
J Biotechnol ; 349: 32-46, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35339574

RESUMO

Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.


Assuntos
Tratamento Farmacológico da COVID-19 , Chlorella , Microalgas , Humanos , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Estudos Prospectivos , SARS-CoV-2 , Enxofre
10.
Sci Total Environ ; 823: 153667, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131253

RESUMO

Algal culturing in photobioreactors for biofuel and other value-added products is a challenge globally specifically due to expensive closed or open photobioreactors associated with the high cost, problems of water loss and contamination. Among the wide varieties of microalgae, diatoms have come out as potential source for crude oil in the form of Diafuel™ (biofuel from diatoms). However, culturing diatoms at large scale hypothesized as diatom solar panels for biofuel production is still facing a need for facile and economical production of value-added products. The aim of this work was to culture diatom (microalgae) in a closed system by sealing the reactor rim tightly with very cheap priced and used plastic bubble wrap material which is generally discarded in a lodging and transportation of goods. To optimize it, different plastic wraps discarded from a plastic industry were tested first for their permeability to gases and impermeability to water loss. It was found that among different varieties of plastic bubble wraps, low density polyethylene (LDPE) bubble wrap material which was used to seal glass containers as photobioreactors allowed harvest of maximum Diafuel™ (37%), lipid (35 µgmL-1), highest cell count (1152 × 102 cells mL-1), maximum CO2 absorbance (0.084) with almost no water loss and nutrient uptake for 40 days of experiments. This was due to its permeability to gases and impermeability to water. To check usability of such LDPE bubble wrap on other microalgae it was therefore tested on the red-green microalgae Haematococcus pluvialis, which showed scope to be scaled up for astaxanthin production using discarded bubble wrap packing material. This study thus would open up a new way for decreasing plastic disposal and with reuse for sustainable development and application of diatom in biofuel production which could find applications in environmental and industrial sectors.


Assuntos
Diatomáceas , Microalgas , Biocombustíveis , Biomassa , Fotobiorreatores , Plásticos
11.
Chemosphere ; 288(Pt 2): 132589, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34678344

RESUMO

Photosynthetic microbial fuel cells (PMFCs) with microalgae have huge potential for treating wastewater while simultaneously converting light energy into electrical energy. The efficiency of such cells directly depends on algal growth, which depends on light intensity. Higher light intensity results in increased potential as well as enhancement in generation of biomass rich in biopolymers. Such biopolymers are produced either by microbes at anode and algae at cathode or vice versa. The biopolymers recovered from these biological sources can be added in wastewater alone or in combination with nanomaterials to act as nanoadsorbents. These nanoadsorbents further increase the efficiency of PMFC by removing the pollutants like metals and dyes. In this review firstly the effect of different light intensities on the growth of microalgae, importance of diatoms in a PMFC and their impact on PMFCs efficiencies have been narrated. Secondly recovery of biopolymers from different biological sources and their role in removal of metals, dyes along with their impact on circular bioeconomy have been discussed. Thereafter bottlenecks and future perspectives in this field of research have been narrated.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Microalgas , Biomassa , Biopolímeros
12.
Chemosphere ; 291(Pt 1): 132692, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34718006

RESUMO

Perovskite solar cells (PVSCs) convert solar energy into electrical energy. Current study employs fabrication of PVSCs using calcium titanate (CaTiO3) prepared by co-precipitation of TiO2 nanoparticle (NP) and CaCO3 NP with later synthesized from mollusc shell. Furthermore, frustules of diatom, Nitzschia palea were used to prepare silica doped CaTiO3 (Si-CaTiO3) nanocomposite. CaTiO3 NP and Si-CaTiO3 nanocomposites film were made on fluorine doped tin oxide (FTO) glass plate using spin coater separately for two different kinds of PVSCs tested at different intensities of light. The perovskite materials were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) spectroscopy. Thickness of the film was measured by profilometer. The maximum power density (PDmax) of CaTiO3 made PVSCs was 0.235 mW/m2 under white LED light and 0.041 mW/m2 in broad spectrum light. Whereas, PDmax of PVSCs with Si-CaTiO3 was higher about 0.0083 mW/m2 in broad spectrum light and was 0.0039 mW/m2 in white LED light. This is due to the fact that CaTiO3 allowed blue and red light in broad spectrum to pass through it without being absorbed compared to white LED light which gets reflected. On the offset, in PVSC made of Si-CaTiO3 since diatoms frustules are made up of nanoporous architecture it increases the overall porosity of PVSC making them potentially more efficient in broad spectrum of light compared to white LED light.


Assuntos
Diatomáceas , Nanopartículas , Animais , Materiais Biocompatíveis , Compostos de Cálcio , Moluscos , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio , Difração de Raios X
13.
Chemosphere ; 291(Pt 1): 132841, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767852

RESUMO

Microbial fuel cell (MFC) with live diatoms (Nitzschia palea) displacing bacteria in the anodic chamber generated electrical potential. Unlike other microalgae, diatoms fix 25% of atmospheric CO2, thus releasing O2. They perform photolysis of water by photosynthesis in the plastid during light photoperiod and cellular respiration in the mitochondria during dark, producing electrons and protons, respectively. The electrogenic property of diatom was explored and evaluated by comparing the potential changes with reference fuel cell without diatoms and that operated with diatoms in the anodic chamber. Such photosynthetic diatom microbial fuel cell (PDMFC) employed f/2 media rich in nitrates, phosphates, metasilicates, trace metals and vitamins as the anolyte and potassium permanganate as catholyte enhanced the output voltage by 3rd day. The maximum power density for PDMFC was 12.62 mWm-2 and coulombic efficiency of 22.95%. Besides this, the fixed diatom cells at anode showed about 64.28% increase in lipid production on 15th day compared to that on 1st day along with the increment in formation of complex fatty acid methyl esters and carotenoids during its operation. Hence, diatoms can be envisaged to substitute bacteria in the anodic chamber of MFC to simultaneously produce bioelectricity and other valuable compounds. Further their silica nanoporous architecture serve as good absorbents for heavy metal removal found in many wastewaters.


Assuntos
Fontes de Energia Bioelétrica , Diatomáceas , Carotenoides , Eletricidade , Eletrodos
14.
Bioengineered ; 12(2): 9531-9549, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709977

RESUMO

Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.


Assuntos
Técnicas Biossensoriais , Diatomáceas/crescimento & desenvolvimento , Metais Pesados/análise , Microalgas/crescimento & desenvolvimento , Nanopartículas , Águas Residuárias/química , Poluentes Químicos da Água/análise
15.
Environ Res ; 201: 111550, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34224710

RESUMO

Wastewater management and its treatment have revolutionized the industry sector into many innovative techniques. However, the cost of recycling via chemical treatment has major issues especially in economically poor sectors. On the offset, one of the most viable and economical techniques to clean wastewater is by growing microalgae in it. Since wastewater is rich in nitrates, phosphates and other trace elements, the environment is suitable for the growth of microalgae. On the other side, the cost of harvesting microalgae for its secondary metabolites is burgeoning. While simultaneously growing of microalgae in photobioreactors requires regular feeding of the nutrients and maintenance which increases the cost of operation and hence cost of its end products. The growth of microalgae in waste waters makes the process not only economical but they also manufacture more amounts of value added products. However, harvesting of these values added products is still a cumbersome task. On the offset, it has been observed that pretreating the microalgal biomass with ultrasonication allows easy oozing of the secondary metabolites like oil, proteins, carbohydrates and methane at much lower cost than that required for their extraction. Among microalgae diatoms are more robust and have immense crude oil and are rich in various value added products. However, due to their thick silica walls they do not ooze the metabolites until the mechanical force on their walls reaches certain threshold energy. In this review recycling of wastewater using microalgae and its pretreatment via ultrasonication with special reference to diatoms is critically discussed. Perspectives on circular bioeconomy and knowledge gaps for employing microalgae to recycle wastewater have been comprehensively narrated.


Assuntos
Diatomáceas , Microalgas , Agricultura , Águas Residuárias
16.
J Eukaryot Microbiol ; 68(6): e12866, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34273209

RESUMO

The morphological characteristics of diatoms are useful for studying their taxonomy. However, the distinction between closely related diatom taxa can be very difficult, especially when the morphological characters are modified by environmental constraints. In the present study, 13 fresh water diatoms were identified morphologically and cultured under axenic conditions. To check this, PCR primers specific for multilocus genes were designed to amplify and screen 13 fresh water diatom monocultures. Multilocus PCR primers (DRR3, scfcpA, Lhcf11, SIT1, SIT3, SIT4, LOC101218388, COI-5P, rbcL, rbcL-3P, LSU D2/D3, UPA, psaA, and 18S rRNA) were tested. It was found that psaA gene, a plant pigment chlorophyll-based PCR marker, amplified in all the diatoms. Out of 13 diatom amplicons, only two fresh water diatoms DNA were sequenced. This included Cyclotella meneghiniana and Sellaphora pupula. The Sanger sequencing results thus established that morphologically identified diatom, Sellaphora pupula, exhibited close phylogeny to Sellaphora whereas fresh water Cyclotella meneghiniana has close lineage to marine diatom Thallosiosira.


Assuntos
Diatomáceas , Apoproteínas , Clorofila A , Diatomáceas/genética , Complexo de Proteína do Fotossistema I , Reação em Cadeia da Polimerase
17.
J Biotechnol ; 338: 5-19, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245783

RESUMO

With the advent of global industrialisation and adaptation of smart life there is rise in anthropogenic pollution especially in water. Remediation of the pollutants (such as metals, and dyes) present in industrial effluents is possible via microbes and algae present in the environment. Microbes are used in a microbial fuel cell (MFC) for remediation of various organic and inorganic pollutants. However, for industrial scale application coupling the MFCs with photocatalytic and photoelectric fuel cell has a potential in improving the output of power. It can also be used for remediation of pollutants more expeditiously, conserving fossil fuels, cleaning environment, hence making the coupled hybrid fuel cell to run economically. Furthermore, such MFC inbuilt with algae in living or powder form give additional value addition products like biofuel, polysaccharides, biopolymers, and polyhydroxy alkanoates etc. This review provides bird's eye view on the removal of environmental pollutants by different biological sources like bacteria and algae. The article is focussed on diatoms as potential algae since they are rich source of crude oil and high value added products in a hybrid photocatalytic MFC. It also covers bottle necks, challenges and future in this field of research.


Assuntos
Fontes de Energia Bioelétrica , Diatomáceas , Poluentes Ambientais , Bactérias , Eletricidade , Eletrodos
18.
Biol Trace Elem Res ; 199(6): 2172-2181, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32840725

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) are used immensely in technology and medicine, but very less is known about toxicity mechanism to human epidermal cells. The objective of this study was to evaluate possible anticancer properties of ZnO-NPs on human epidermoid carcinoma cells using MTT assay, measurement of reactive oxygen species, DNA fragmentation, and nuclear condensation. ZnO-NPs were synthesized by sol-gel method using zinc acetate dihydrate, ethylene glycol, and 2-propyl alcohol. Numerous characterization techniques such as UV-visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, and dynamic light scattering spectroscopy were used to confirm synthesis, purity, optical, and surface characteristics, size, shape, and distribution of ZnO-NPs. Our finding showed that ZnO-NPs considerably decreased cell viability of human epidermoid carcinoma A431 cells with a parallel increase in nuclear condensation and DNA fragmentation in a dose dependent manner. Moreover, real time PCR expression study showed that treatment of human epidermoid carcinoma cells with ZnO-NPs trigger increased expression of tumor suppressor gene p53, bax, and caspase-3 while downregulate antiapoptotic gene bcl-2. Thus ZnO-NPs induce apoptosis in A431 cells through DNA degradation and generation of reactive oxygen species via p53, bax/bcl-2, and caspase pathways.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Sobrevivência Celular , DNA , Humanos , Espécies Reativas de Oxigênio , Óxido de Zinco/farmacologia
19.
Bioresour Technol ; 319: 124129, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32977098

RESUMO

The present study underlines the application of centrifugal force and pulse electric field techniques along with its comparison to resonance energy to harvest lipid from a fixed number of Pinnularia saprophila cells. Sulpho phospho vanillin method for lipid, and analysis of cells via microscopy was done. It was found that a centrifugal force of 11110×g for 15 min allowed ~3.39% lipid to ooze out with 2.5% cell destruction. Alternatively, when same numbers of diatom cells were subjected to pulse electric field at 110 kV/27 mA for 10 µs, maximum lipid production of 2.86% with 21.19% cell death was observed. It was perceived that diatom cells in a micro resonating micro fluidic chamber for 20 min harvested 4.4% of lipid with 11.16% of cell death. However, microfluidic device needs to be scaled up using cheaper material instead of silicon wafer, to be an efficient technique to milk lipid from diatoms.


Assuntos
Diatomáceas , Lipídeos , Microscopia , Silício
20.
Sci Rep ; 10(1): 18448, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116244

RESUMO

In the present study, embellishment or beautification of diatoms on substrates like plastics, polydimethylsiloxane, graphite, glass plate, and titanium dioxide, triggered by exopolysaccharides was examined under laboratory conditions. Exopolysaccharides are secreted mainly by primary colonisers, bacteria, which is succeeded by secondary colonisers i.e. diatoms. Both diatom (Nitzschia sp.4) and bacteria (Bacillus subtilis) were exposed with substrates separately for 30 days. Diatoms adhere on substrates strongly, not only because of surface roughness of different substrates but also the nanoporous architecture of diatoms which enhanced their embellishment. This study attempted to identify the substrates that adhere to diatoms strongly and was mainly analyzed by scanning electron microscope and further the observations are well supported by math work software (MATLAB). The variation of diatom's binding on different substrates is due to the influence of marine litters on diatom population in ocean beds where they undergo slow degradation releasing macro, micro and nanoparticles besides radicals and ions causing cell death. Therefore a proof-of-concept model is developed to successfully deliver a message concerning benefit of using different diatom species.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Modelos Biológicos , Fitoplâncton/crescimento & desenvolvimento , Plásticos , Polissacarídeos/metabolismo , Resíduos Sólidos , Diatomáceas/ultraestrutura , Fitoplâncton/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA