Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Front Chem ; 12: 1361082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741671

RESUMO

SARS-CoV-2 infection affects and modulates serum as well as hematological parameters. However, whether it modifies these parameters in the existing disease conditions, which help in the erection of specific treatments for the disease, is under investigation. Here, we aimed to determine whether serum and hematological parameters alteration in various diseases, diabetes mellitus (DM), hypertension (HTN), ischemic heart disease (IHD) and myocardial infarction (MI) conditions correlate and signal SARS-CoV-2 infection, which could be used as a rapid diagnosis tool for SARS-CoV-2 infection in disease conditions. To assess the projected goals, we collected blood samples of 1,113 male and female patients with solo and multiple disease conditions of DM/HTN/IHD/MI with severe COVID-19, followed by biochemical analysis, including COVID-19 virus detection by RT-qPCR. Furthermore, blood was collected from age-matched disease and healthy individuals 502 and 660 and considered as negative control. In our results, we examined higher levels of serum parameters, including D-dimer, ferritin, hs-CRP, and LDH, as well as hematological parameters, including TLC in sole and multiple diseases (DM/HTN/IHD/MI) conditions compared to the control subjects. Besides, the hematological parameters, including Hb, RBC, and platelet levels, decreased in the patients. In addition, we found declined levels of leukocyte count (%), lymphocyte (%), monocyte (%), and eosinophil (%), and elevated level of neutrophil levels (%) in all the disease patients infected with SARS-CoV-2. Besides, NLR and NMR ratios were also statistically significantly (p < 0.05) high in the patients with solo and multiple disease conditions of DM/HTN/IHD/MI infected with the SARS-CoV-2 virus. In conclusion, rapid alteration of sera and hematological parameters are associated with SARS-CoV-2 infections, which could help signal COVID-19 in respective disease patients. Moreover, our results may help to improve the clinical management for the rapid diagnosis of COVID-19 concurrent with respective diseases.

2.
Sci Rep ; 14(1): 6984, 2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523189

RESUMO

Acne is a prevalent dermatological disease, with high global incidence, and is a health menace. The current study aimed to isolate and characterize the anaerobic bacteria responsible for the condition. Causes of a total of 70 acne-based bacterium isolates obtained from patients of mild, moderate, and severe acne, 24 were Clostridium innocuum, 21 were Lactobacillus plantarum, 13 were Anaerococcus prevotii, and 12 were Peptoniphilus asaccharolyticus. Nearly 69% of males were suffering, while the rest were females at 31%. The 15-30 years old age group was the most affected. The gold/alginate nanoparticles' nanopreparation (GANPs) produced from chloroauric acid and sodium alginate was an effective treatment against the acne conditions under the experimental conditions. The nanopreparation exhibited significant inhibitory activity against anaerobic bacterial isolates, with a minimum inhibitory concentration of 200 µg/ml for A. prevotii and P. asaccharolyticus, and 400 µg/ml for C. innocuum and L. plantarum. The in vitro efficacy of the GANPs on human blood parameters was also assessed. The concurrent results suggested potential antibacterial activity and hemocompatibility of the product, which has promise to be used as a successful antibacterial agent for acne.


Assuntos
Acne Vulgar , Bactérias Anaeróbias , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Alginatos/farmacologia , Antibacterianos/farmacologia , Acne Vulgar/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
J Biomol Struct Dyn ; : 1-15, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533826

RESUMO

The impact of COVID-19 urges scientists to develop targeted drug delivery to manage Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral infections with a fast recovery rate. The aim of the study is to develop Hyaluronic Acid (HA) drug conjugates of viral drugs to target two important enzymes (Mpro and PLpro) of SARS-CoV-2. Three antiviral drugs, namely Dexamethasone (DEX), Favipiravir (FAV), and Remdesivir (REM), were chosen for HA conjugation due to their reactive functional groups. Free forms of drugs (DEX, FAV, REM) and HA drug conjugates (HA-DEX, HA-FAV, HA-REM, HA-RHA, HA-RHE) were validated against Mpro (PDB ID 6LU7) and PLpro (PDB 7LLZ), which play an essential role in the replication and reproduction of the SARS-CoV-2 virus. The results of the present study revealed that HA-drug conjugates possess higher binding affinity and the best docking score towards the Mpro and PLpro target proteins of SARS-CoV-2 than their free forms of drugs. ADMET screening resulted that HA-drug conjugates exhibited better pharmacokinetic profiles than their pure forms of drugs. Further, molecular dynamic simulation studies, essential dynamics and free energy landscape analyses show that HA antiviral drug conjugates possess good trajectories and energy status, with the PLpro target protein (PDB 7LLZ) of SARS-CoV-2 through long-distance (500 ns) simulation screening. The research work recorded the best drug candidate for Cell-Targeted Drug Delivery (CTDD) for SARS-CoV-2-infected cells through hyaluronic acid conjugates of antiviral drugs.Communicated by Ramaswamy H. Sarma.

4.
Heliyon ; 10(4): e26149, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384569

RESUMO

Biomedical image analysis plays a crucial role in enabling high-performing imaging and various clinical applications. For the proper diagnosis of blood diseases related to red blood cells, red blood cells must be accurately identified and categorized. Manual analysis is time-consuming and prone to mistakes. Analyzing multi-label samples, which contain clusters of cells, is challenging due to difficulties in separating individual cells, such as touching or overlapping cells. High-performance biomedical imaging and several medical applications are made possible by advanced biosensors. We develop an intelligent neural network model that can automatically identify and categorize red blood cells from microscopic medical images using region-based convolutional neural networks (RCNN) and cutting-edge biosensors. Our model successfully navigates obstacles like touching or overlapping cells and accurately recognizes various blood structures. Additionally, we utilized data augmentation as a pre-processing method on microscopic images to enhance the model's computational efficiency and expand the sample size. To refine the data and eliminate noise from the dataset, we utilized the Radial Gradient Index filtering algorithm for imaging data equalization. We exhibit improved detection accuracy and a reduced model loss rate when using medical imagery datasets to apply our proposed model in comparison to existing ResNet and GoogleNet models. Our model precisely detected red blood cells in a collection of medical images with 99% training accuracy and 91.21% testing accuracy. Our proposed model outperformed earlier models like ResNet-50 and GoogleNet by 10-15%. Our results demonstrated that Artificial intelligence (AI)-assisted automated red blood cell detection has the potential to revolutionize and speed up blood cell analysis, minimizing human error and enabling early illness diagnosis.

5.
J Oleo Sci ; 73(2): 263-273, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38233115

RESUMO

Haplophyllum tuberculatum (Forssk.) A.Juss. volatile oils were obtained by distillation of the aerial parts of the plant growing in Libya during the summer and spring seasons. A yield and componential analysis revealed that the summer season oil, which is frequently used in traditional medicaments by North African communities, was high in yield (0.858%) compared to the spring season oil (0.47%), and distinguished by the presence of major and various diverse constituents, some of which are considered chemical markers. Owing to the traditional and high incidence of use of the summer-produced essential oil for the treatment of several disorders, including hepatic diseases, and fatigue, the oil was pharmacologically investigated for its varied bioactivities of anti-microbial, in vivo anti-oxidant, and in vitro anti-cancer properties. Thirty-three compounds were identified and represented 96.2% of the peaks in the GCchromatogram of the summer oil, in which the major volatile constituents were δ-3-carene (21.5%), bornyl acetate (16.9%), and limonene aldehyde (15.2%). The summer-based essential oil of the plant demonstrated moderate anti-bacterial activity against Gram-positive bacteria and a relatively strong antibacterial effect against Gram-negative bacteria as compared to the positive antibacterial controls, ampicillin and gentamicin, respectively. Also, antifungal activity against Aspergillus sp. was observed. The summerproduced oil also exhibited in vivo antioxidant and in vitro anti-cancer activities.


Assuntos
Óleos Voláteis , Rutaceae , Óleos Voláteis/química , Estações do Ano , Antibacterianos/química , Antifúngicos , Antioxidantes/farmacologia , Antioxidantes/química , Rutaceae/química , Testes de Sensibilidade Microbiana , Óleos de Plantas/farmacologia , Óleos de Plantas/química
6.
J Antibiot (Tokyo) ; 77(2): 111-119, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38017084

RESUMO

The aims of this study were isolation-purification and characterization of L-glutaminase from L. gasseri BRLHM clinical isolates and investigation of its efficiency as an antimicrobial agent against multidrug-resistant P. aeruginosa. The MICs of L-glutaminase and gentamicin reference were evaluated by the well-diffusion method. The biofilm on the IUD contraceptive was visualized using atomic force microscopy (AFM) image analyses. The purified L-glutaminase possessed significant antimicrobial activity against P. aeruginosa isolates (p < 0.05), and the antibiofilm formation activity of the purified L-glutaminase was stronger than the antibiofilm activity of the referral standard drug, gentamicin (P < 0.05), which were checked by the inhibition of the biofilm formation on the IUD contraceptive device. Investigations indicated that L-glutaminase may have a crucial role in future clinical applications.


Assuntos
Anti-Infecciosos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Glutaminase , Pseudomonas aeruginosa , Anti-Infecciosos/farmacologia , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Biofilmes
7.
Biol Trace Elem Res ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112988

RESUMO

One of the most pressing environmental issues is how to properly dispose of municipal solid waste (MSW), which represents both a substantial source of concern and a challenge. The current study evaluated cobalt (Co) accumulation in MSW, their uptake by different vegetables grown for two years, and related human health risks. Vegetables were grown in four different groups, such as one control (ground soil), and the remaining treatment groups (T1, T2, and T3) received varying concentrations of MSW. The analysis of Co was done through an atomic absorption spectrophotometer (AAS). Results revealed that the concentration of Co was higher in all the vegetables (n = 15) grown in soil supplemented with 75% MSW during 2nd growing year. Among all vegetables, the highest concentration of Co was observed in Solanum tuberosum at T3 during 2nd growing year. The pollution load index (PLI) value for vegetables during both growing years was more than 1 except in control soil. The findings indicated that the highest enrichment factor (EF) and hazard resilience index (HRI) value of 0.09 was present in S. tuberosum. Health index values for cobalt in the study were below 1. The HRI < 1 indicated that consumers do not face any immediate health risks. The investigation of Co concentrations in blood samples obtained from individuals residing in different areas contributes a human health perspective to the research. The findings indicate that the concentration of Co rises with an increasing proportion of MSW. While the metal levels in MSW-treated soil were not high enough to classify the soil as polluted, the results recommend that recycling MSW can substitute mineral fertilizers. Nevertheless, the presence of cobalt in MSW may directly affect soil fertility and could impact crop production and human health.

9.
Environ Monit Assess ; 195(12): 1509, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37989796

RESUMO

Although existing studies mainly focused on the air quality status in Bangladesh, quantifying the natural and manmade effects, the frequency of high pollution levels, and the associated health risks remained beyond detailed investigation. Air quality and meteorological data from the Department of Environment for 2012-2019 were analyzed, attempting to answer those questions. Cluster analysis of PM2.5, PM10, and gaseous pollutants implied that Dhaka and neighboring cities, Narayangonj and Gazipur, are from similar sources compared to the other major cities in the country. Apart from the transboundary sources, land use types and climate parameters unevenly affected local pollution loadings across city domains. The particulate concentrations persistently remained above the national standard for almost half the year, with the peaks during the dry months. Even though nitrogen oxides remained high in all three cities, other gaseous pollutants, such as CO and O3, except SO2, showed elevated concentrations solely in Dhaka city. Concentrations of gaseous pollutants in Dhaka vary spatially, but no statistical differences could be discerned between the working days and holidays. Frequency analysis results and hazard quotients revealed the likelihood of adverse health outcomes in Narayangonj ensuing from particulate exposures surpasses the other cities for different age, gender, and occupation groups. Nonetheless, school-aged children and construction workers were most at risk from chronic exposure to gaseous pollutants mostly in Dhaka. One limitation of this study was that the routine air quality monitoring happens just from five sites, making the evidence-based study concerning health outcomes quite challenging.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Criança , Humanos , Poluentes Atmosféricos/análise , Cidades , Efeitos Antropogênicos , Monitoramento Ambiental , Bangladesh , Poluição do Ar/análise , Poluentes Ambientais/análise , Poeira/análise , Gases/análise , Material Particulado/análise
10.
Nanomedicine (Lond) ; 18(25): 1839-1854, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37982771

RESUMO

Aims: To synthesize a silver-cored nanosuspension utilizing Ziziphus spina-christi fresh-leaf extract and evaluate their antimicrobial activity against multidrug-resistant pathogenic microbes. Materials and Methods: The prepared nanosuspension was analyzed by spectro-analytical techniques and tested for antimicrobial activity and resistance to biofilm formation. The leaf extract and nanosuspension were tested separately and together as a mixture. Results: Constituent nanoparticles were average-sized (∼34 nm) and were active against both Gram-positive and Gram-negative microbes and yeast. Candida albicans showed a 24.50 ± 1.50 mm inhibition zone, followed by Escherichia coli and Staphylococcus aureus. Increased bioactivity with the highest multifold increments, 150%, for erythromycin against all tested microbes was observed. Carbenicillin and trimethoprim showed 166%- and 300%-fold increments for antimicrobial activity against Pseudomonas aeruginosa, respectively. Conclusion: The nanosuspension exhibited strong potential as an antimicrobial agent and overcame multidrug resistance.


Ziziphus spina-christi leaf extract-coated silver nanoparticles were synthesized using an environment-friendly method, and the preparation was effective against Escherichia coli, Staphylococcus aureus and Candida albicans. The prepared formulation showed increased antimicrobial activity at a 150­300% increase compared with leaf extract-only activity. The prepared suspension was also active against Pseudomonas aeruginosa, the multidrug-resistant microbe, and has the potential to treat drug-resistant microbial infections.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Ziziphus , Prata/farmacologia , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Resistência a Múltiplos Medicamentos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
11.
Nanomedicine (Lond) ; 18(11): 875-887, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37470184

RESUMO

Aim: The cytotoxic effects of graphene oxide nanoparticles (GONPs) using MTT assays, observance of apoptotic markers, and oxidative stress were outlined. Materials & methods: Rat embryonic fibroblasts (REFs) and human epithelial breast cells (HBLs) were used at 250, 500 and 750 µg/ml concentrations. Results: Significant cytotoxic and apoptotic effects were observed. Analyses of CYP2E1 and malondialdehyde concentrations in REF and HBL-100 cell lines after exposing to GONPs confirmed the nanomaterials toxicity. However, the glutathione levels in REF and HBL-100 cell lines showed a substantial reduction compared with the control. The cytochrome CYP2E1, glutathione, malondialdehyde and caspase-3 alterations provided a plausible interlinked relationship. Conclusion: The study confirmed the GONPs cytotoxic effects on REF and HBL-100 cell lines. The outcome suggested caution in wide-spread applications of GONPs, which could have implications for occupational health also.


Assuntos
Antineoplásicos , Citocromo P-450 CYP2E1 , Humanos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Apoptose , Estresse Oxidativo , Antineoplásicos/farmacologia , Glutationa/metabolismo , Mitocôndrias/metabolismo , Malondialdeído/metabolismo , Sobrevivência Celular
12.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119486, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172765

RESUMO

Bacterial-extracellular-vesicles (BEVs) derived from Escherichia coli, strain-A5922, were used as a therapeutic tool to treat colon cancer cells, HT-29. BEVs induced oxidative stress, and observed mitochondrial autophagy, known as mitophagy, were crucial in initiation of treatment. The mitophagy, induced by the BEVs in HT-29 cells, produced adenocarcinomic cytotoxicity, and stopped the cells growth. The trigger for mitophagy, and an increase in productions of reactive oxygen species led to cellular oxidative stress, that eventually led to cells death. A reduction in the mitochondrial membrane potential, and an increase in the PINK1 expressions confirmed the oxidative stress involvements. The BEVs triggered cytotoxicity, and mitophagy in the HT-29 carcinoid cells, channelized through the Akt/mTOR pathways connecting the cellular oxidative stress, effectively played its part to cause cells death. These findings substantiated the BEVs' potential as a plausible tool for treating, and possibly preventing the colorectal cancer.


Assuntos
Neoplasias do Colo , Vesículas Extracelulares , Humanos , Células HT29 , Mitofagia , Estresse Oxidativo , Serina-Treonina Quinases TOR
13.
Neurol Ther ; 12(4): 1015-1031, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37222860

RESUMO

INTRODUCTION: The clinical, social, and economic burden of epilepsy is undeniable. Local guidance on epilepsy management is limited and needed to address the both use of anti-seizure medication (ASM) and switching practices which influence clinical outcomes. AREAS COVERED: An expert panel composed of practicing neurologists and epileptologists from countries of the Gulf Cooperation Council (GCC) met in 2022 to discuss local challenges in the management of epilepsy and formulate recommendations for clinical practice. Published literature on the outcomes of ASM switching was reviewed along with clinical practice/gaps, international guidelines, and local treatment availabilities. EXPERT OPINION: Improper ASM use and inappropriate brand-name-to-generic or generic-to-generic switching can contribute to worsening clinical outcomes in epilepsy. ASMs should be used for the management of epilepsy based on patient clinical profile, underlying epilepsy syndrome, and drug availability to ensure optimal and sustainable treatment. Both first-generation and newer ASMs can be considered; appropriate use is recommended from the beginning of treatment. It is critical to avoid inappropriate ASM switching to avoid breakthrough seizures. All generic ASMs should fulfill strict regulatory requirements. If needed, ASM changes should always be approved by the treating physician. ASM switching (brand-name-to-generic, generic-to-generic, generic-to-brand-name) should be avoided in epilepsy patients who have achieved control but can be considered for those uncontrolled on current medication.

14.
Drug Dev Ind Pharm ; 49(3): 1-12, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37074796

RESUMO

BACKGROUND: Ginkgo biloba (GB) leaves extract is known to possess potent antioxidants and other bioactivities such as improved skin conditions and rejuvenation. OBJECTIVE: This study aimed to develop a cosmeceutical preparation to utilize the strong antioxidant potential of GB leaves as part of the skincare formulation. METHODS: Cream incorporated GB (GBC) was prepared by mixing the obtained extract with stearic acid-sodium hydroxide components in an emulsion format. The obtained GBC was characterized for GB contents, uniformity, pH, compatibility, stability, and skin's human application. RESULTS: A homogeneous, physically, and chemically stable, with pH near the skin pH and shiny cream, was obtained. The prepared cream was easy to rub and pearly in appearance. It was effective and safe during the two-week trial conducted on human volunteers according to clinical trial registry protocols. The cream scavenged free radicals in DPPH assay tests. The cream incorporated GB made the skin more spirited and tauter. Furthermore, the wrinkles were reduced and the skin was renewed vigor. CONCLUSION: The GBC worked at the topical level and provided benefits when applied daily for the trial duration. The formulation also provided visually observable anti-wrinkle effects on the skin, with visible improvements in the skin's shape and texture. The prepared cream can be used to rejuvenate the skin.


Assuntos
Cosmecêuticos , Envelhecimento da Pele , Humanos , Cosmecêuticos/farmacologia , Ginkgo biloba , Rejuvenescimento , Voluntários Saudáveis , Creme para a Pele , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia
15.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111339

RESUMO

Combination of bovine serum albumin with microemulsions as constituting ingredient biopolymer has long been regarded an innovative method to address the surface functionalization and stability issues in the targeted payload deliveries, thereupon producing effectively modified microemulsions, which are superior in loading capacity, transitional and shelf-stability, as well as site-directed/site-preferred delivery, has become a favored option. The current study aimed to develop an efficient, suitable and functional microemulsion system encapsulating sesame oil (SO) as a model payload towards developing an efficient delivery platform. UV-VIS, FT-IR, and FE-SEM were used to characterize, and analyze the developed carrier. Physicochemical properties assessments of the microemulsion by dynamic light scattering size distributions, zeta-potential, and electron micrographic analyses were performed. The mechanical properties for rheological behavior were also studied. The HFF-2 cell line and hemolysis assays were conducted to ascertain the cell viability, and in vitro biocompatibility. The in vivo toxicity was determined based on a predicted median lethal dose (LD50) model, wherein the liver enzymes' functions were also tested to assess and confirm the predicted toxicity.

16.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978368

RESUMO

The current study aimed to investigate the phytochemical contents and antioxidant, antimicrobial, and antibiofilm activities of four halophytic plants, namely, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, native to central Saudi Arabia. The alcoholic extract of E. chamaesyce was found to be the most potent in various bioactivities-based evaluations and rich in polyphenols and flavonoid secondary metabolites, with 68.0 mg/g and 39.23 mg/g gallic acid and quercetin equivalents, respectively. Among all plants' extracts, the alcoholic extract of E. chamaesyce had the highest DPPH scavenging and metal chelating antioxidant activities at 74.15 Trolox equivalents and 16.28 EDTA equivalents, respectively. The highest antimicrobial activity of E. chamaesyce extract was found to be against Shigella flexneri, with a mean zone of inhibition diameter of 18.1 ± 0.2 mm, whereas the minimum inhibitory concentration, minimum biocidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration values were 12.5, 25, 25, and 50 mg/mL, respectively. The LC-ESI-MS/MS analysis of the E. chamaesyce extract showed the presence of six flavonoids and ten phenolic constituents. The in silico binding of the E. chamaesyce extract's constituents to Staphylococcus aureus tyrosyl-tRNA synthetase enzyme displayed -6.2 to -10.1 kcal/mol binding energy values, suggesting that these constituents can contribute to the antimicrobial properties of the plant extract, making it an essential medicinal ingredient. In conclusion, these results warrant further investigation to standardize the antimicrobial profiles of these plant extracts.

17.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982245

RESUMO

Halophytes and xerophytes, plants with adequate tolerance to high salinity with strong ability to survive in drought ecosystem, have been recognized for their nutritional and medicinal values owing to their comparatively higher productions of secondary metabolites, primarily the phenolics, and the flavonoids, as compared to the normal vegetation in other climatic regions. Given the consistent increases in desertification around the world, which are associated with increasing salinity, high temperature, and water scarcity, the survival of halophytes due to their secondary metabolic contents has prioritized these plant species, which have now become increasingly important for environmental protection, land reclamation, and food and animal-feed security, with their primary utility in traditional societies as sources of drugs. On the medicinal herbs front, because the fight against cancer is still ongoing, there is an urgent need for development of more efficient, safe, and novel chemotherapeutic agents, than those currently available. The current review describes these plants and their secondary-metabolite-based chemical products as promising candidates for developing newer cancer therapeutics. It further discusses the prophylactic roles of these plants, and their constituents in prevention and management of cancers, through an exploration of their phytochemical and pharmacological properties, with a view on immunomodulation. The important roles of various phenolics and structurally diverse flavonoids as major constituents of the halophytes in suppressing oxidative stress, immunomodulation, and anti-cancer effects are the subject matter of this review and these aspects are outlined in details.


Assuntos
Neoplasias , Plantas Tolerantes a Sal , Animais , Plantas Tolerantes a Sal/metabolismo , Ecossistema , Estresse Oxidativo , Recursos Naturais , Imunomodulação , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle
18.
Plants (Basel) ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904003

RESUMO

Plants of the genus Tylophora have commonly been used in traditional medicine in various communities, especially in the tropical and subtropical regions of climatic zones. Of the nearly 300 species reported in the Tylophora genus, eight are primarily used in various forms to treat a variety of bodily disorders based on the symptoms. Certain plants from the genus have found use as anti-inflammatory, anti-tumor, anti-allergic, anti-microbial, hypoglycemic, hypolipidemic, anti-oxidant, smooth muscle relaxant, immunomodulatory, and anti-plasmodium agents, as well as free-radical scavengers. Pharmacologically, a few plant species from the genus have exhibited broad-spectrum anti-microbial and anti-cancer activity, which has been proven through experimental evaluations. Some of the plants in the genus have also helped in alcohol-induced anxiety amelioration and myocardial damage repair. The plants belonging to the genus have also shown diuretic, anti-asthmatic, and hepato-protective activities. Tylophora plants have afforded diverse structural bases for secondary metabolites, mainly belonging to phenanthroindolizidine alkaloids, which have been found to treat several diseases with promising pharmacological activity levels. This review encompasses information on various Tylophora species, their distribution, corresponding plant synonyms, and chemical diversity of the secondary metabolic phytochemicals as reported in the literature, together with their prominent biological activities.

19.
Foods ; 12(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36900526

RESUMO

Applications of analytical quality by design (QbD) approach for developing HPLC (High Performance Liquid Chromatography) methods for food components assays, and separations of complex natural product mixtures, are still limited. The current study developed and validated, for the first time, a stability-indicating HPLC method for simultaneous determinations of curcuminoids in Curcuma longa extracts, tablets, capsules, and curcuminoids' forced degradants under different experimental conditions. Towards separation strategy, critical method parameters (CMPs) were defined as the mobile phase solvents' percent-ratio, the pH of the mobile phase, and the stationary-phase column temperature, while the peaks resolution, retention time, and the number of theoretical plates were recognized as the critical method attributes (CMAs). Factorial experimental designs were used for method development, validation, and robustness evaluation of the procedure. The Monte Carlo simulation evaluated the developing method's operability, and that ensured the concurrent detections of curcuminoids in natural extracts, commercial-grade pharmaceutical dosage-forms, and the forced degradants of the curcuminoids in a single mixture. The optimum separations were accomplished using the mobile phase, consisting of an acetonitrile-phosphate buffer (54:46 v/v, 0.1 mM) with 1.0 mL/min flow rate, 33 °C column temperature, and 385 nm wavelength for UV (Ultra Violet) spectral detections. The method is specific, linear (R2 ≥ 0.999), precise (% RSD < 1.67%), and accurate (% recovery 98.76-99.89%), with LOD (Limit of Detection) and LOQ (Limit of Quantitation) at 0.024 and 0.075 µg/mL for the curcumin, 0.0105 µg/mL and 0.319 µg/mL for demethoxycurcumin, and 0.335 µg/mL and 1.015 µg/mL for the bisdemethoxycurcumin, respectively. The method is compatible, robust, precise, reproducible, and accurately quantifies the composition of the analyte mixture. It exemplifies the use of the QbD approach in acquiring design details for developing an improved analytical detection and quantification method.

20.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768593

RESUMO

Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs (NSAIDs) has been under constant scrutiny owing to their tolerance, dependency, and other organs toxicities and tissue damage, including harm to the gastrointestinal tract (GIT) and renal tissues. A new, 3',4',6'-triacetylated-glucoside, 2-O-ß-D-(3',4',6'-tri-acetyl)-glucopyranosyl-3-methyl pentanoic acid was obtained from Ficus populifolia, and characterized through a detailed NMR spectroscopic analysis, i.e., 1H-NMR, 13C-DEPT-135, and the 2D nuclear magnetic resonance (NMR) correlations. The product was in silico investigated for its analgesic prowess, COX-2 binding feasibility and scores, drug likeliness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, possible biosystem's toxicity using the Discovery Studio®, and other molecular studies computational software programs. The glycosidic product showed strong potential as an analgesic agent. However, an in vivo evaluation, though at strong levels of pain-relieving action, was estimated on the compound's extract owing to the quantity and yield issues of the glycosidic product. Nonetheless, the F. populifolia extract showed the analgesic potency in eight-week-old male mice on day seven of the administration of the extract's dose in acetic acid-induced writhing and hot-plate methods. Acetic acid-induced abdominal writhing for all the treated groups decreased significantly (p < 0.0001), as compared to the control group (n = 6) by 62.9%, 67.9%, and 70.9% of a dose of 100 mg/kg (n = 6), 200 mg/kg (n = 6), and 400 mg/kg (n = 6), respectively. Similarly, using the analgesia meter, the reaction time to pain sensation increased significantly (p < 0.0001), as compared to the control (n = 6). The findings indicated peripheral and central-nervous-system-mediated analgesic action of the product obtained from the corresponding extract.


Assuntos
Ficus , Animais , Masculino , Camundongos , Ácido Acético/uso terapêutico , Analgésicos/uso terapêutico , Ficus/química , Dor/tratamento farmacológico , Dor/induzido quimicamente , Extratos Vegetais/química , Ácidos Pentanoicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA