RESUMO
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteômica , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Transdução de Sinais , Anoikis , Metástase Neoplásica , Transição Epitelial-Mesenquimal , Microambiente TumoralRESUMO
Natural remedies from a range of sources, including plants, animals, microorganisms, and marine life, have made a significant contribution to the treatment of many ailments. Lavender is a Mediterranean shrub from the Lamiaceae family. Lavender flowers (Lavandula flores) include active ingredients (3%), anthocyanins, sugars, phytosterols, minerals, and tannins and are majorly used for herbal applications. Lavender essential oil's descriptive and analytical composition varies depending on genotype, growing region, climatic circumstances, propagation, and morphological characteristics. There are around 300 chemical components in essential oil. Linalool, terpinen-4-ol, linalyl acetate, ocimene, acetate lavandulol, and cineole are the most prominent constituents. Lavender oil has antibacterial and antioxidant properties. The lavender extract helps to prevent dementia and may slow cancer cell growth, while lavender oil is used to treat skin problems. This review will cover the recent medical, economic and regional advancements in levander propagation and how the Council of Scientific & Industrial Research Indian Institute of Integrative (CSIR IIIM) aroma mission is actively acting as a bridge between farmers and their economic improvement by attracting them to the field of medicinal plant cultivation.
RESUMO
Metastasis is the leading cause of death in cancer patients and a major challenging aspect of cancer biology. Various adaptive molecular signaling pathways play a crucial role in cancer metastasis and later in the formation of secondary tumors. Aggressive cancer cells like triple negative breast cancer (TNBCs) are more inclined to undergo metastasis hence having a high recurrence rate and potential of micro-metastasis. Tumor cells in circulation known as circulating tumor cells (CTCs) offer an attractive drug target to treat metastatic disease. Cell cycle regulation and stress response of CTCs in blood has a crucial role in their survival and progression and thus may be considered therapeutically active hotspots. The cyclin D/cyclin-dependent kinase (CDK) pathway regulates cell cycle checkpoints, a process that is frequently dysregulated in cancer cells. Selective CDK inhibitors can limit the phosphorylation of cell cycle regulatory proteins by inducing cell cycle phase arrest, and thus may be an effective therapeutic strategy for aggressive cancer cells in their dividing phase at the primary or secondary site. However, during the floating condition, cancer cells halt their multiplication process and proceed through the various steps of metastasis. Current study showed that a novel CDK inhibitor 4ab induced autophagy and endoplasmic reticulum (ER) stress in agressive cancer cells grown under adherent and floating conditions resulting in paraptosis. Further, our results showed that 4ab efficiently induced cell death in aggressive cancer cells through ER stress-mediated activation of JNK signaling. Additionally, was observed that treatment of 4ab in tumor-bearing mice displayed a significant reduction in tumor burden and micro-metastasis. The outcome of these studies showed that 4ab can be a potential anti-tumor and anti-metastatic agent. Graphical representation of 4ab: image representing the effect of 4ab on death-inducing pathways in aggressive cancer cells. 4ab induces ER stress and activates autophagy leading to vacuolation of there by causing apoptosis in aggressive cancer cells.
Assuntos
Apoptose , Neoplasias , Animais , Camundongos , Estresse do Retículo Endoplasmático , Transdução de Sinais , Linhagem Celular Tumoral , Autofagia , Proliferação de CélulasRESUMO
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias/patologia , Oxirredução , Células-Tronco Neoplásicas/metabolismo , AutofagiaRESUMO
Myrica esculenta is an important ethnomedicinal plant used in the traditional system of medicine and as an important nutraceutical. Several studies on the plant justify its use in alternative systems of medicine and establish a scientific rationale for its possible therapeutic application. The plant contains a range of biologically active classes of compounds, particularly diarylheptanoids, flavonoids, terpenes, tannins, and glycosides. The nutraceutical potential of the plant can be particularly attributed to its fruit, and several studies have demonstrated the presence of carbohydrates, proteins, fats, fiber content, and minerals like sodium, potassium, calcium, manganese, iron, copper, and zinc, in it. The current review aims to provide complete insight into the phytochemistry, pharmacological potential, and nutritional potential of the plant, which would not only serve as a comprehensive source of information but also will highlight the scope of isolation and evaluation of these molecules for various disease conditions.
Assuntos
Myrica , Myrica/química , Medicina Tradicional , Frutas , Diarileptanoides , Flavonoides , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/farmacologiaRESUMO
Cellular ROS production participates in various cellular functions but its accumulation decides the cell fate. Malignant cells have higher levels of ROS and active antioxidant machinery, a characteristic hallmark of cancer with an outcome of activation of stress-induced pathways like autophagy. Autophagy is an intracellular catabolic process that produces alternative raw materials to meet the energy demand of cells and is influenced by the cellular redox state thus playing a definite role in cancer cell fate. Since damaged mitochondria are the main source of ROS in the cell, however, cancer cells remove them by upregulating the process of mitophagy which is known to play a decisive role in tumorigenesis and tumor progression. Chemotherapy exploits cell machinery which results in the accumulation of toxic levels of ROS in cells resulting in cell death by activating either of the pathways like apoptosis, necrosis, ferroptosis or autophagy in them. So understanding these redox and autophagy regulations offers a promising method to design and develop new cancer therapies that can be very effective and durable for years. This review will give a summary of the current therapeutic molecules targeting redox regulation and autophagy for the treatment of cancer. Further, it will highlight various challenges in developing anticancer agents due to autophagy and ROS regulation in the cell and insights into the development of future therapies.
Assuntos
Neoplasias , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Autofagia , Oxirredução , Neoplasias/tratamento farmacológico , Neoplasias/metabolismoRESUMO
Anchorage-independent survival of cancer cells is associated with metastasis as it enables cells to travel to secondary target sites. Tissue integrity is generally maintained by detachment-induced cell death called 'anoikis', but cancer cells undergoing the multistep metastatic process show resistance to anoikis. Anoikis resistance enables these cells to survive through the extracellular matrix (ECM) deprived phase, which starts when cancer cells detach and move into the circulation till cells reach to the secondary target site. Comprehensive analysis of the molecular and functional biology of anoikis resistance in cancer cells will provide crucial details about cancer metastasis, enabling us to identify novel therapeutic targets against cancer cell dissemination and ultimately secondary tumor formation. This review broadly summarizes recent advances in the understanding of cellular and molecular events leading to anoikis and anoikis resistance. It further elaborates more about the signaling cross-talk in anoikis resistance and its regulation during metastasis.
Assuntos
Anoikis , Transdução de Sinais , Linhagem Celular Tumoral , Sobrevivência Celular , Matriz Extracelular/metabolismo , Humanos , Metástase NeoplásicaRESUMO
Lysosomal biogenesis plays a vital role in cell fate. Under certain conditions, excessive lysosomal biogenesis leads to susceptibility for lysosomal membrane permeabilization resulting in various pathological conditions including cell death. In cancer cells apoptosis machinery becomes dysregulated during the course of treatment, thus allows cancer cells to escape apoptosis. So it is therefore imperative to identify cytotoxic agents that exploit non-apoptotic mechanisms of cell death. Our study showed that pancreatic cancer cells treated with SDS-203 triggered an incomplete autophagic response and a nuclear translocation of transcriptional factor TFEB. This resulted in abundant biosynthesis and accumulation of autophagosomes and lysosomes into the cells leading to their death. It was observed that the silencing of autophagy genes didn't alter the cell fate, whereas siRNA-mediated silencing of TFEB subdued SDS-203 mediated lysosomal biogenesis and associated cell death. Further mouse tumors treated with SDS-203 showed a significant reduction in tumor burden and increased expression of lysosomal markers. Taken together this study demonstrates that SDS-203 treatment triggers non-apoptotic cell death in pancreatic cancer cells through a mechanism of lysosome over accumulation.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Neoplasias Pancreáticas , Animais , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Morte Celular , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dipsacus inermis Wall. is an edible Himalayan herb which is extensively used in traditional Ayurvedic system of medicine against various inflammation related disorders. AIM OF THE STUDY: This study was designed to evaluate the anti-inflammatory effects of Dipsacus inermis Wall. methanol extract (DIME) by using in vitro and in vivo models and to elucidate the underlying mechanism of action. MATERIALS AND METHODS: The in vitro anti-inflammatory potential of DIME was determined in LPS stimulated J774A.1â¯cells. The inhibitory effect of DIME on COX-2, PGE2 and inflammatory cytokines was determined by ELISA and RT-PCR. The suppression of ROS in response to DIME was determined by flow cytometry. Phosphorylation of NF-κBp65 and IκB degradation was determined by western blotting. RESULTS: Significant inhibition of NO, COX-2, PGE2 and pro-inflammatory cytokines including IL-1ß, TNF-α and IL-6 was found in response to DIME in LPS stimulated J774A.1â¯cells. The extract was found to down regulate the LPS induced expression of TNF-α, IL-6, iNOS and COX-2 along with inhibition of intracellular ROS. The in vivo studies carried on Wistar rats showed significant preventive effect of DIME against acetic acid induced increase in vascular permeability and carrageenan induced paw edema along with stabilization of histopathological alterations. CONCLUSION: The study demonstrated that DIME has significant in vitro and in vivo anti-inflammatory effect which is mediated by inhibiting the activation of NF-κB pathway. Our data opened a promising new pharmacological approach of designing anti-inflammatory drugs by studying individual fractions of the plant extract.