Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701232

RESUMO

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Assuntos
Carbono , Clima , Microplásticos , Nitrogênio , Solo , Nitrogênio/análise , Solo/química , Carbono/análise , Poluentes do Solo/análise
3.
Environ Res ; 252(Pt 2): 118945, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631466

RESUMO

Microplastics pollution and climate change are primarily investigated in isolation, despite their joint threat to the environment. Greenhouse gases (GHGs) are emitted during: the production of plastic and rubber, the use and degradation of plastic, and after contamination of environment. This is the first meta-analysis to assess underlying causal relationships and the influence of likely mediators. We included 60 peer-reviewed empirical studies; estimating GHGs emissions effect size and global warming potential (GWP), according to key microplastics properties and soil conditions. We investigated interrelationships with microbe functional gene expression. Overall, microplastics contamination was associated with increased GHGs emissions, with the strongest effect (60%) on CH4 emissions. Polylactic-acid caused 32% higher CO2 emissions, but only 1% of total GWP. Phenol-formaldehyde had the greatest (175%) GWP via 182% increased N2O emissions. Only polystyrene resulted in reduced GWP by 50%, due to N2O mitigation. Polyethylene caused the maximum (60%) CH4 emissions. Shapes of microplastics differed in GWP: fiber had the greatest GWP (66%) whereas beads reduced GWP by 53%. Films substantially increased emissions of all GHGs: 14% CO2, 10% N2O and 60% CH4. Larger-sized microplastics had higher GWP (125%) due to their 9% CO2 and 63% N2O emissions. GWP rose sharply if soil microplastics content exceeded 0.5%. Higher CO2 emissions, ranging from 4% to 20%, arose from soil which was either fine, saturated or had high-carbon content. Higher N2O emissions, ranging from 10% to 95%, arose from soils that had either medium texture, saturated water content or low-carbon content. Both CO2 and N2O emissions were 43%-56% higher from soils with neutral pH. We conclude that microplastics contamination can cause raised GHGs emissions, posing a risk of exacerbating climate-change. We show clear links between GHGs emissions, microplastics properties, soil characteristics and soil microbe functional gene expression. Further research is needed regarding underlying mechanisms and processes.

4.
Ecotoxicol Environ Saf ; 262: 115202, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37390726

RESUMO

Fungi are considered among the most efficient microbial degraders of plastics, as they produce salient enzymes and can survive on recalcitrant compounds with limited nutrients. In recent years, studies have reported numerous species of fungi that can degrade different types of plastics, yet there remain many gaps in our understanding of the processes involved in biodegradation. In addition, many unknowns need to be resolved regarding the fungal enzymes responsible for plastic fragmentation and the regulatory mechanisms which fungi use to hydrolyse, assimilate and mineralize synthetic plastics. This review aims to detail the main methods used in plastic hydrolysis by fungi, key enzymatic and molecular mechanisms, chemical agents that enhance the enzymatic breakdown of plastics, and viable industrial applications. Considering that polymers such as lignin, bioplastics, phenolics, and other petroleum-based compounds exhibit closely related characteristics in terms of hydrophobicity and structure, and are degraded by similar fungal enzymes as plastics, we have reasoned that genes that have been reported to regulate the biodegradation of these compounds or their homologs could equally be involved in the regulation of plastic degrading enzymes in fungi. Thus, this review highlights and provides insight into some of the most likely regulatory mechanisms by which fungi degrade plastics, target enzymes, genes, and transcription factors involved in the process, as well as key limitations to industrial upscaling of plastic biodegradation and biological approaches that can be employed to overcome these challenges.

5.
Chemosphere ; 260: 127578, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683024

RESUMO

Micro- and nano-plastics have widely been recognized as major global environmental problem due to its widespread use and inadequate waste management. The emergence of these plastic pollutants in agroecosystem is a legitimate ecotoxicological concerns for food web exchanges. In agriculture, micro/nano plastics are originated from a variety of different agricultural management practices, such as the use of compost, sewage sludge and mulching. A range of soil properties and plant traits are affected by their presence. With the increase of plastic debris, these pollutant materials have now begun to demonstrate serious implications for key soil ecosystem functions, such as soil microbial activity and nutrient cycling. Nitrogen (N) cycle is key predictor of ecological stability and management in terrestrial ecosystem. In this review, we evaluate ecological risks associated with micro-nano plastic for soil-plant system. We also discuss the consequence of plastic pollutants, either positive or negative, on soil microbial activities. In addition, we systematically summarize both direct and hypothesized implications for N cycling in agroecosystem. We conclude that soil N transformation had showed varied effects resulting from different types and sizes of plastic polymers present in soil. While mixed effects of microplastic pollution on plant growth and yield have been observed, biodegradable plastics have appeared to pose greater risk for plant growth compared to chemical plastic polymers.


Assuntos
Microplásticos/toxicidade , Nitrogênio/metabolismo , Plantas/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo , Agricultura , Produtos Agrícolas/efeitos dos fármacos , Ecossistema , Ecotoxicologia , Poluição Ambiental , Nanoestruturas , Esgotos , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
6.
Int J Biometeorol ; 63(5): 617-625, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30136126

RESUMO

All rubber tree clones (Hevea brasiliensis) exhibit regular annual wintering characterized by senescence and abscission of leaves. After 3-4 weeks, this is followed by the onset of new leaves. It is likely that the timing of leaf onset affects the susceptibility of rubber trees to rubber powdery mildew disease, as this predominantly infests young leaves. However, little information is available on the phenological behavior of different rubber clones, or how meteorological factors affect such behavior. We assessed the wintering and flowering patterns of five rubber clones in Xishuangbanna, southwest China, based on observations made from 1978 to 2011, and evaluated how these patterns responded to different meteorological factors. Partial least squares regression was used to analyze the timing of defoliation, refoliation, and flowering. Our results showed that the two clones RRIM 600 and GT1 defoliated during the last week of December and refoliated in the last week of January, and clones Yunyan 277-5, Yunyan 34-4, and PR 107 defoliated during the first week of January and refoliated in the second week of February. The number of hours of sunshine during both the rainy season and the cold dry period in the dry season were important determinants of phenological changes in the rubber trees. Similarly, higher temperatures tended to delay the onset of defoliation and refoliation, and were a triggering factor for the onset of flowering. These results may help rubber cultivators to schedule appropriate disease control measures, as well as to design hybridization programs aiming at the production of clones which are resistant to foliar disease.


Assuntos
Mudança Climática/história , Flores/crescimento & desenvolvimento , Hevea/crescimento & desenvolvimento , Estações do Ano , Ascomicetos , China , História do Século XX , História do Século XXI , Doenças das Plantas/prevenção & controle , Luz Solar
7.
Anticancer Agents Med Chem ; 19(5): 592-598, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30306880

RESUMO

BACKGROUND: One of the major goals of computational chemists is to determine and develop the pathways for anticancer drug discovery and development. In recent past, high performance computing systems elicited the desired results with little or no side effects. The aim of the current review is to evaluate the role of computational chemistry in ascertaining kinases as attractive targets for anticancer drug discovery and development. METHODS: Research related to computational studies in the field of anticancer drug development is reviewed. Extensive literature on achievements of theorists in this regard has been compiled and presented with special emphasis on kinases being the attractive anticancer drug targets. RESULTS: Different approaches to facilitate anticancer drug discovery include determination of actual targets, multi-targeted drug discovery, ligand-protein inverse docking, virtual screening of drug like compounds, formation of di-nuclear analogs of drugs, drug specific nano-carrier design, kinetic and trapping studies in drug design, multi-target QSAR (Quantitative Structure Activity Relationship) model, targeted co-delivery of anticancer drug and siRNA, formation of stable inclusion complex, determination of mechanism of drug resistance, and designing drug like libraries for the prediction of drug-like compounds. Protein kinases have gained enough popularity as attractive targets for anticancer drugs. These kinases are responsible for uncontrolled and deregulated differentiation, proliferation, and cell signaling of the malignant cells which result in cancer. CONCLUSION: Interest in developing drugs through computational methods is a growing trend, which saves equally the cost and time. Kinases are the most popular targets among the other for anticancer drugs which demand attention. 3D-QSAR modelling, molecular docking, and other computational approaches have not only identified the target-inhibitor binding interactions for better anticancer drug discovery but are also designing and predicting new inhibitors, which serve as lead for the synthetic preparation of drugs. In light of computational studies made so far in this field, the current review highlights the importance of kinases as attractive targets for anticancer drug discovery and development.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Relação Quantitativa Estrutura-Atividade
8.
J Exp Bot ; 70(4): 1197-1207, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576523

RESUMO

Hybrid weakness is a post-zygotic hybridization barrier frequently observed in plants, including rice. In this study, we describe the genomic variation among three temperate japonica rice (Oryza sativa ssp. japonica) varieties 'Aranghyangchalbyeo' ('CH7'), 'Sanghaehyangheolua' ('CH8') and 'Shinseonchalbyeo' ('CH9'), carrying different hybrid weakness genes. The reciprocal progeny obtained from crossing any two varieties displayed characteristic hybrid weakness traits. We mapped and cloned a new locus, Hwc3 (hybrid weakness 3), on chromosome 4. Sequence analysis identified that a long terminal repeat (LTR) retrotransposon was inserted into the promoter region of the Hwc3 gene in 'CH7'. A 4-kb DNA fragment from 'CH7' containing the Hwc3 gene with the inserted LTR retrotransposon was able to induce hybrid weakness in hybrids with 'CH8' plants carrying the Hwc1 gene by genetic complementation. We investigated the differential gene expression profile of F1 plants exhibiting hybrid weakness and detected that the genes associated with energy metabolism were significantly down-regulated compared with the parents. Based on our results, we propose that LTR retrotransposons could be a potential cause of hybrid weakness in intrasubspecific hybrids in japonica rice. Understanding the molecular mechanisms underlying intrasubspecific hybrid weakness is important for increasing our knowledge on reproductive isolation and could have significant implications for rice improvement and hybrid breeding.


Assuntos
Hibridização Genética , Oryza/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética
9.
AoB Plants ; 10(6): ply060, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30538811

RESUMO

Reproductive isolation is generally regarded as the essence of the speciation process. Studying closely related species is convenient for understanding the genetic basis of reproductive isolation. Therefore, the present review is restricted to the species and subspecies of the Oryza sativa complex, which includes the two domestic rice cultivars and six wild species. Although closely related, these rice species are separated from each other by a range reproductive barriers. This review presents a comprehensive understanding of the forces that shaped the formation of reproductive barriers among and between the species of the O. sativa complex. We suggest the possibility that domestication and artificial breeding in these rice species can lead to the early stages of speciation. Understanding the evolutionary and molecular mechanisms underlying reproductive isolation in rice will increase our knowledge in speciation and would also offer practical significance for the implementation of crop improvement strategies.

10.
Curr Top Med Chem ; 18(18): 1550-1558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30360715

RESUMO

BACKGROUND: Many of the tropical diseases are neglected by the researchers and medicinal companies due to lack of profit and other interests. The Drugs for Neglected Diseases initiative (DNDi) is established to overcome the problems associated with these neglected diseases. According to a report published by the WHO, leprosy (Hansen's disease) is also a neglected infectious disease. METHODS: A negligible amount of advancements has been made in last few decades which includes the tools of diagnosis, causes, treatment, and genetic studies of the bacterium (Mycobacterium leprae) that causes leprosy. The diagnosis of leprosy at earlier stages is important for its effective treatment. Recent studies on vitamin D and its receptors make leprosy diagnosis easier at earlier stages. Skin biopsies and qPCR are the other tools to identify the disease at its initial stages. RESULTS: Until now a specific drug for the treatment of leprosy is not available, therefore, Multi-Drug Therapy (MDT) is used, which is hazardous to health. Besides Mycobacterium leprae, recently a new bacterium Mycobacterium lepromatosis was also identified as a cause of leprosy. During the last few years the genetic studies of Mycobacterium leprae, the role of vitamin D and vitamin D receptors (VDR), and the skin biopsies made the treatment and diagnosis of leprosy easier at early stages. The studies of micro RNAs (miRNAs) made it easy to differentiate leprosy from other diseases especially from tuberculosis. CONCLUSION: Leprosy can be distinguished from sarcoidosis by quantitative study of reticulin fibers present in skin. The treatment used until now for leprosy is multi-drug treatment. The complete genome identification of Mycobacterium leprae makes the research easy to develop target specified drugs for leprosy. Rifampicin, identified as a potent drug, along with other drugs in uniform multi-drug treatment, has a significant effect when given to leprosy patients at initial stages. These are effective treatments but a specific drug for leprosy is still needed to be identified. The current review highlights the use of modern methods for the identification of leprosy at its earlier stages and the effective use of drugs alone as well as in combination.


Assuntos
Hansenostáticos/farmacologia , Hanseníase , Mycobacterium leprae/efeitos dos fármacos , Humanos , Hanseníase/diagnóstico , Hanseníase/tratamento farmacológico
11.
Front Microbiol ; 9: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403464

RESUMO

Powdery mildew disease of rubber affects immature green leaves, buds, inflorescences, and other immature tissues of rubber trees, resulting in up to 45% losses in rubber latex yield worldwide. The disease is often controlled by dusting the diseased plants with powdered sulfur, which can have long-term negative effects on the environment. Therefore, it is necessary to search for alternative and environmentally friendly control methods for this disease. This study aimed to identify mycoparasites associated with rubber powdery mildew species, and characterize them on the basis of morpho-molecular characteristics and phylogenetic analyses of ITS rDNA regions. We observed that the Ampelomyces fungus parasitizes rubber powdery mildew, and eventually destroys it. Furthermore, on the basis of phylogenetic analyses and morphological characteristics we confirmed that the Ampelomyces mycoparasite isolated from rubber powdery mildew is closely related to other mycohost taxa in the Erysiphe genus. A total of 73 (71 retrieved from GenBank and two obtained from fresh collections of rubber powdery mildew fungi) Ampelomyces spp. were analyzed using ITS rDNA sequences and 153 polymorphic sites were identified through haplotypic analyses. A total of 28 haplotypes (H1-H28) were identified to have a complex network of mutation events. The results from phylogenetic tree constructed on the basis of maximum likelihood analyses, and the haplotype network tree revealed similar relationships of clustering pattern. This work presents the first report on morpho-molecular characterization of Ampelomyces species that are mycoparasites of powdery mildew of Hevea brasiliensis.

12.
Curr Protein Pept Sci ; 19(3): 292-301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28059042

RESUMO

Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Neoplasias/tratamento farmacológico , Alcaloides/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Descoberta de Drogas , Humanos , Neoplasias/enzimologia
13.
Microb Ecol ; 76(1): 192-204, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29196843

RESUMO

Huanglongbing (HLB) is one of the most destructive citrus plant diseases worldwide. It is associated with the fastidious phloem-limited α-proteobacteria 'Candidatus Liberibacter asiaticus', 'Ca. Liberibacter africanus' and 'Ca. Liberibacter americanus'. In recent years, HLB-associated Liberibacters have extended to North and South America. The causal agents of HLB have been putatively identified, and their transmission pathways and worldwide population structure have been extensively studied. However, very little is known about the epidemiologic relationships of Ca. L. asiaticus, which has limited the scope of HLB research and especially the development of control strategies. HLB-affected plants produce damaged fruits and die within several years. To control the disease, scientists have developed new compounds and screened existing compounds for their antibiotic and antimicrobial activities against the disease. These compounds, however, have very little or even no effect on the disease. The aim of the present review was to compile and compare different methods of HLB disease control with newly developed integrative strategies. In light of recent studies, we also describe how to control the vectors of this disease and the biological control of other citrus plant pathogens. This work could steer the attention of scientists towards integrative control strategies.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Citrus/microbiologia , Doenças das Plantas/prevenção & controle , Rhizobiaceae/efeitos dos fármacos , América , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/uso terapêutico , Brassinosteroides/farmacologia , Interações Hospedeiro-Patógeno , Hipertermia Induzida/métodos , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Rhizobiaceae/classificação , Rhizobiaceae/patogenicidade , Compostos Orgânicos Voláteis/farmacologia
14.
Environ Pollut ; 225: 469-480, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28318785

RESUMO

The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation.


Assuntos
Aspergillus/metabolismo , Biodegradação Ambiental , Poliésteres/metabolismo , Poliuretanos/metabolismo , Fungos/metabolismo , Microscopia Eletrônica de Varredura , Paquistão , Filogenia , Poliésteres/análise , Poliuretanos/análise , Solo , Microbiologia do Solo , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Microb Pathog ; 105: 185-195, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28192221

RESUMO

Powdery mildew is a fungal disease that infects a wide range of plants, including rubber trees, which results in a reduction of latex yields of up to 45%. The causal agent of powdery mildew of rubber was first described as Oidium heveae, but later morpho-molecular research suggested that in the past, O. heveae has been confused with Erysiphe quercicola. However, it is still under debate whether the causal agent should be classified as a species of the genus Erysiphe emend. or Golovinomyces and Podosphaera, respectively. Therefore, the aim of this study was to undertake the morpho-molecular characterization of powdery mildew species associated with rubber trees, thus resolving these taxonomic issues. Morphological observation under light and scanning electron microscopes (SEM) clearly identified two morphotypes of the rubber powdery mildew. With the support of morphological and phylogenetic data, one of the two morphotypes was identified as the asexual morph of E. quercicola, while the second morphotype is still insufficiently known and according to the morphological results obtained we assume that it might belong to the genus Golovinomyces. More collections and additional molecular data are required for final conclusions regarding the exact taxonomic position of the second morphotype of rubber powdery mildew and its relation to the name O. heveae. The haplotype analysis identified eight haplotype groups of E. quercicola indicating the high genetic diversity of the species.


Assuntos
Hevea/microbiologia , Doenças das Plantas/microbiologia , Saccharomycetales/classificação , Saccharomycetales/fisiologia , China , DNA Fúngico/análise , DNA Fúngico/genética , DNA Ribossômico/genética , Variação Genética , Haplótipos , Hifas/citologia , Microscopia Eletrônica de Varredura , Técnicas de Tipagem Micológica , Filogenia , Saccharomycetales/genética , Saccharomycetales/ultraestrutura , Análise de Sequência de DNA , Especificidade da Espécie , Esporos Fúngicos/citologia , Esporos Fúngicos/fisiologia , Esporos Fúngicos/ultraestrutura
16.
Microb Pathog ; 97: 189-97, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27287496

RESUMO

Cuticle-degrading-proteases (CDPs) secreted by Beauveria spp. are pivotal biocontrol substances, possessing commercial potential for developing bio-pesticides. Therefore, a thoughtful and contemplative understanding and assessment of the structural and functional features of these proteases would markedly assist the development of biogenic pesticides. Computational molecular biology is a new facile alternative approach to the tedious experimental molecular biology; therefore, by using bioinformatics tools, we isolated and characterized an insect CDP gene from Beauveria bassiana 70 s.l. genomic DNA. The CDP gene (1240 bp with GeneBank accession no. KT804651.1) consisted of three introns and four CDS exons, and shared 74-100% sequence identity to the reference CDP genes. Its phylogenetic tree results showed a unique evolution pattern, and the predicted amino acid peptide (PAAP) consisted of 344 amino acid residues with pI, molecular weight, instability index, grand average hydropathicity value and aliphatic index of 7.2, 35.4 kDa, 24.45, -0.149, and 76.63, respectively. The gene possessed 74-89% amino acid sequence similarity to the 12 reference strains. Three motifs (Peptidase_S8 subtilase family) were detected in the PAAP, and the computed 3D structure possessed 79.09% structural identity to alkaline serine proteases. The PAAP had four (three serine proteases and one Pyridoxal-dependent decarboxylase) conserved domains, a disulfide bridge, two calcium binding sites, MY domain, and three predicted active sites in the serine family domains. These results will set the groundwork for further exploitation of proteases and understanding the mechanism of disease caused by cuticle-degrading-serine-proteases from entomopathogenic fungi.


Assuntos
Beauveria/enzimologia , Biologia Computacional , Proteínas de Insetos/metabolismo , Serina Proteases/metabolismo , Beauveria/genética , Domínio Catalítico , Interações Hidrofóbicas e Hidrofílicas , Ponto Isoelétrico , Modelos Moleculares , Peso Molecular , Filogenia , Conformação Proteica , Domínios Proteicos , Proteólise , Homologia de Sequência de Aminoácidos , Serina Proteases/química , Serina Proteases/genética
17.
J Invertebr Pathol ; 133: 87-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26592942

RESUMO

An insect-toxic protein, Bb70p, was purified from Beauveria bassiana 70 using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration. Bb70p has a high affinity for anion exchangers and 2D electrophoresis results revealed a single spot with a molecular weight of 35.5 kDa and an iso-electric point of ∼4.5. Bb70p remains active from 4 to 60°C, within a pH range of 4-10, but is more active in slightly acidic pH. A pure protein, Bb70p does not have any carbohydrate side chains. The protein caused high mortality by intra-haemocelic injection into Galleria mellonella with LD50 of 334.4 µg/g body weight and activates the phenol oxidase cascade. With a partial amino acid sequence comparison using the NCBI database, we showed no homology to known toxin proteins of entomopathogenic fungi. Thus, Bb70p appears to be an insect toxin protein, demonstrating novelty. Identification of this insect-toxic protein presents potential to enhance the virulence of B. bassiana through genetic manipulation.


Assuntos
Beauveria/metabolismo , Proteínas Fúngicas/farmacologia , Mariposas/efeitos dos fármacos , Micotoxinas/farmacologia , Animais , Beauveria/genética , Beauveria/patogenicidade , Bioensaio , Proteínas Fúngicas/isolamento & purificação , Micotoxinas/isolamento & purificação , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA