Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367594

RESUMO

Candida auris, Candida blankii, and Kodamaea ohmeri have been regarded as emerging fungal pathogens that can cause infections with high mortality. For genotyping of C. auris, a multilocus sequence typing (MLST) scheme based on four locus sequences has been reported, while there is no typing scheme for C. blankii and K. ohmeri. In the present study, the existing MLST scheme of C. auris was modified by adding more locus types deduced from sequence data available in the GenBank database. Furthermore, MLST schemes of C. blankii and K. ohmeri were developed using the four cognate loci (ITS, RPB1, RPB2, D1/D2) and similar sequence regions to those of C. auris. These MLST schemes were applied to identify the ST (sequence type) of clinical isolates of C. auris (n = 7), C. blankii (n = 9), and K. ohmeri (n = 6), derived from septicemia or otomycosis in Bangladesh in 2021. All the C. auris isolates were classified into a single ST (ST5) and clade I, having a Y132F substitution in ERG11p, which is associated with azole resistance. Similarly, all the C. blankii isolates belonged to a single type (ST1). In contrast, six K. ohmeri isolates were assigned to five types (ST1-ST5), suggesting its higher genetic diversity. These findings revealed the availability of MLST schemes for these three fungal species for understanding their clonal diversity among clinical isolates.

2.
J Am Chem Soc ; 126(33): 10238-9, 2004 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-15315424

RESUMO

Stable zinc-doped iron(III) oxide thin films that exhibit p-type behavior were synthesized by spray pyrolytic deposition (SPD) on conducting indium-doped tin oxide-coated glass substrate. The highest photocurrent density of 1.1 mA/cm2 was observed at an illumination intensity of 40 mW/cm2 at -0.8 V vs Pt for zinc-doped p-Fe2O3 samples prepared at an optimum substrate temperature of 663 K using an optimum spray time of 70 s. A quantum efficiency of 21.1% at 325 nm was found for SPD samples prepared using a dopant concentration of 0.0088 M zinc nitrate hexahydrate. X-ray diffraction results showed structures of alpha-Fe2O3 and ZnFe2O4. A direct band gap energy of 2.2 eV was found from monochromatic photocurrent density data and agrees closely with the band gap obtained from UV-vis absorption. The X-ray photoelectron spectroscopy results also confirm the presence of zinc dopant (4.0 atomic %) in thin films of zinc-doped p-Fe2O3.

3.
Science ; 297(5590): 2243-5, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12351783

RESUMO

Although n-type titanium dioxide (TiO2) is a promising substrate for photogeneration of hydrogen from water, most attempts at doping this material so that it absorbs light in the visible region of the solar spectrum have met with limited success. We synthesized a chemically modified n-type TiO2 by controlled combustion of Ti metal in a natural gas flame. This material, in which carbon substitutes for some of the lattice oxygen atoms, absorbs light at wavelengths below 535 nanometers and has a lower band-gap energy than rutile (2.32 versus 3.00 electron volts). At an applied potential of 0.3 volt, chemically modified n-type TiO2 performs water splitting with a total conversion efficiency of 11% and a maximum photoconversion efficiency of 8.35% when illuminated at 40 milliwatts per square centimeter. The latter value compares favorably with a maximum photoconversion efficiency of 1% for n-type TiO2 biased at 0.6 volt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA