RESUMO
Biologics developers are moving beyond antibodies for delivery of a wide range of therapeutic interventions. These non-antibody modalities are often based on 'natural' protein scaffolds that are modified to deliver bioactive sequences. Both human-derived and non-human-sourced scaffold proteins have been developed. New types of "non-antibody" scaffolds are still being discovered, as they offer attractive alternatives to monoclonals due to their smaller size, improved stability, and ease of synthesis. They are believed to have low immunogenic potential. However, while several human-sourced protein scaffolds have not been immunogenic in clinical studies, this may not predict their overall performance in other therapeutic applications. A preliminary evaluation of their potential for immunogenicity is warranted. Immunogenicity risk potential has been clearly linked to the presence of T "helper" epitopes in the sequence of biologic therapeutics. In addition, tolerogenic epitopes are present in some human proteins and may decrease their immunogenic potential. While the detailed sequences of many non-antibody scaffold therapeutic candidates remain unpublished, their backbone sequences are available for review and analysis. We assessed 12 example non-antibody scaffold backbone sequences using our epitope-mapping tools (EpiMatrix) for this perspective. Based on EpiMatrix scoring, their HLA DRB1-restricted T cell epitope content appears to be lower than the average protein, and sequences that may act as tolerogenic epitopes are present in selected human-derived scaffolds. Assessing the potential immunogenicity of scaffold proteins regarding self and non-self T cell epitopes may be of use for drug developers and clinicians, as these exciting new non-antibody molecules begin to emerge from the preclinical pipeline into clinical use.
Assuntos
Anticorpos , Epitopos de Linfócito T , Humanos , Mapeamento de EpitoposRESUMO
The identification and removal of host cell proteins (HCPs) from biologic products is a critical step in drug development. Despite recent improvements to purification processes, biologics such as monoclonal antibodies, enzyme replacement therapies, and vaccines that are manufactured in a range of cell lines and purified using diverse processes may contain HCP impurities, making it necessary for developers to identify and quantify impurities during process development for each drug product. HCPs that contain sequences that are less conserved with human homologs may be more immunogenic than those that are more conserved. We have developed a computational tool, ISPRI-HCP, that estimates the immunogenic potential of HCP sequences by evaluating and quantifying T cell epitope density and relative conservation with similar T cell epitopes in the human proteome. Here we describe several case studies that support the use of this method for classifying candidate HCP impurities according to their immunogenicity risk.
Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Humanos , Linhagem Celular , Desenvolvimento de Medicamentos , Epitopos de Linfócito T , Medição de RiscoRESUMO
Infantile-onset Pompe disease (IOPD) is a glycogen storage disease caused by a deficiency of acid alpha-glucosidase (GAA). Treatment with recombinant human GAA (rhGAA, alglucosidase alfa) enzyme replacement therapy (ERT) significantly improves clinical outcomes; however, many IOPD children treated with rhGAA develop anti-drug antibodies (ADA) that render the therapy ineffective. Antibodies to rhGAA are driven by T cell responses to sequences in rhGAA that differ from the individuals' native GAA (nGAA). The goal of this study was to develop a tool for personalized immunogenicity risk assessment (PIMA) that quantifies T cell epitopes that differ between nGAA and rhGAA using information about an individual's native GAA gene and their HLA DR haplotype, and to use this information to predict the risk of developing ADA. Four versions of PIMA have been developed. They use EpiMatrix, a computational tool for T cell epitope identification, combined with an HLA-restricted epitope-specific scoring feature (iTEM), to assess ADA risk. One version of PIMA also integrates JanusMatrix, a Treg epitope prediction tool to identify putative immunomodulatory (regulatory) T cell epitopes in self-proteins. Using the JanusMatrix-adjusted version of PIMA in a logistic regression model with data from 48 cross-reactive immunological material (CRIM)-positive IOPD subjects, those with scores greater than 10 were 4-fold more likely to develop ADA (p<0.03) than those that had scores less than 10. We also confirmed the hypothesis that some GAA epitopes are immunomodulatory. Twenty-one epitopes were tested, of which four were determined to have an immunomodulatory effect on T effector response in vitro. The implementation of PIMA V3J on a secure-access website would allow clinicians to input the individual HLA DR haplotype of their IOPD patient and the GAA pathogenic variants associated with each GAA allele to calculate the patient's relative risk of developing ADA, enhancing clinical decision-making prior to initiating treatment with ERT. A better understanding of immunogenicity risk will allow the implementation of targeted immunomodulatory approaches in ERT-naïve settings, especially in CRIM-positive patients, which may in turn improve the overall clinical outcomes by minimizing the development of ADA. The PIMA approach may also be useful for other types of enzyme or factor replacement therapies.
Assuntos
Biologia Computacional/métodos , Doença de Depósito de Glicogênio Tipo II/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , alfa-Glucosidases/metabolismo , Terapia de Reposição de Enzimas , Mapeamento de Epitopos , Feminino , Antígenos HLA-DR/genética , Humanos , Tolerância Imunológica , Lactente , Masculino , Medicina de Precisão , Prognóstico , Análise de Regressão , Risco , alfa-Glucosidases/genética , alfa-Glucosidases/imunologiaRESUMO
Novel computational tools for swine vaccine development can expand the range of immunization approaches available to prevent economically devastating swine diseases and spillover events between pigs and humans. PigMatrix and EpiCC are two new tools for swine T cell epitope identification and vaccine efficacy analysis that have been integrated into an existing computational vaccine design platform named iVAX. The iVAX platform is already in use for the development of human vaccines, thus integration of these tools into iVAX improves and expands the utility of the platform overall by making previously validated immunoinformatics tools, developed for humans, available for use in the design and analysis of swine vaccines. PigMatrix predicts T cell epitopes for a broad array of class I and class II swine leukocyte antigen (SLA) using matrices that enable the scoring of sequences for likelihood of binding to SLA. PigMatrix facilitates the prospective selection of T cell epitopes from the sequences of swine pathogens for vaccines and permits the comparison of those predicted epitopes with "self" (the swine proteome) and with sequences from other strains. Use of PigMatrix with additional tools in the iVAX toolkit also enables the computational design of vaccines in silico, for testing in vivo. EpiCC uses PigMatrix to analyze existing or proposed vaccines for their potential to protect, based on a comparison between T cell epitopes in the vaccine and circulating strains of the same pathogen. Performing an analysis of T cell epitope relatedness analysis using EpiCC may facilitate vaccine selection when a novel strain emerges in a herd and also permits analysis of evolutionary drift as a means of immune escape. This review of novel computational immunology tools for swine describes the application of PigMatrix and EpiCC in case studies, such as the design of cross-conserved T cell epitopes for swine influenza vaccine or for African Swine Fever. We also describe the application of EpiCC for determination of the best vaccine strains to use against circulating viral variants of swine influenza, swine rotavirus, and porcine circovirus type 2. The availability of these computational tools accelerates infectious disease research for swine and enable swine vaccine developers to strategically advance their vaccines to market.
Assuntos
Febre Suína Africana/prevenção & controle , Asfarviridae/imunologia , Epitopos de Linfócito T/imunologia , Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/imunologia , Doenças dos Suínos/prevenção & controle , Vacinação/veterinária , Febre Suína Africana/virologia , Animais , Biologia Computacional/métodos , Simulação por Computador , Antígenos de Histocompatibilidade Classe I/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/virologia , Vacinação/métodosRESUMO
The RTS,S/AS01 malaria vaccine will undergo a pilot vaccination study in sub-Saharan Africa beginning in 2019. RTS,S/AS01 Phase III trials reported an efficacy of 28.3% (children 5-17 months) and 18.3% (infants 6-12 weeks), with substantial variability across study sites. We postulated that the relatively low efficacy of the RTS,S vaccine and variability across sites may be due to lack of T-cell epitopes in the vaccine antigen, and due to the HLA distribution of the vaccinated population, and/or due to 'immune camouflage', an immune escape mechanism. To examine these hypotheses, we used immunoinformatics tools to compare T helper epitopes contained in RTS,S vaccine antigens with Plasmodium falciparum circumsporozoite protein (CSP) variants isolated from infected individuals in Malawi. The prevalence of epitopes restricted by specific HLA-DRB1 alleles was inversely associated with prevalence of the HLA-DRB1 allele in the Malawi study population, suggesting immune escape. In addition, T-cell epitopes in the CSP of strains circulating in Malawi were more often restricted by low-frequency HLA-DRB1 alleles in the population. Furthermore, T-cell epitopes that were highly conserved across CSP variants in Malawi possessed TCR-facing residues that were highly conserved in the human proteome, potentially reducing T-cell help through tolerance. The CSP component of the RTS,S vaccine also exhibited a low degree of T-cell epitope relatedness to circulating variants. These results suggest that RTS,S vaccine efficacy may be impacted by low T-cell epitope content, reduced presentation of T-cell epitopes by prevalent HLA-DRB1, high potential for human-cross-reactivity, and limited conservation with the CSP of circulating malaria strains.