Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(11): 4377-4384, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442207

RESUMO

Low number of circulating tumor cells (CTCs) in the blood samples and time-consuming properties of the current CTC isolation methods for processing a small volume of blood are the biggest obstacles to CTC usage in practice. Therefore, we aimed to design a CTC dialysis system with the ability to process cancer patients' whole blood within a reasonable time. Two strategies were employed for developing this dialysis setup, including (i) synthesizing novel in situ core-shell Cu ferrites consisting of the Cu-CuFe2O4 core and the MIL-88A shell, which are targeted by the anti-HER2 antibody for the efficient targeting and trapping of CTCs; and (ii) fabricating a microfluidic system containing a three-dimensional (3D)-printed microchannel filter composed of a polycaprolactone/Fe3O4 nanoparticle composite with pore diameter less than 200 µm on which a high-voltage magnetic field is focused to enrich and isolate the magnetic nanoparticle-targeted CTCs from a large volume of blood. The system was assessed in different aspects including capturing the efficacy of the magnetic nanoparticles, CTC enrichment and isolation from large volumes of human blood, side effects on blood cells, and the viability of CTCs after isolation for further analysis. Under the optimized conditions, the CTC dialysis system exhibited more than 80% efficacy in the isolation of CTCs from blood samples. The isolated CTCs were viable and were able to proliferate. Moreover, the CTC dialysis system was safe and did not cause side effects on normal blood cells. Taken together, the designed CTC dialysis system can process a high volume of blood for efficient dual diagnostic and therapeutic purposes.


Assuntos
Compostos Férricos , Nanoestruturas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Microfluídica , Medicina de Precisão , Separação Celular/métodos , Diálise Renal , Impressão Tridimensional , Fenômenos Magnéticos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA