Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 59(9): 5664-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149995

RESUMO

There are currently 18 drug classes for the treatment of tuberculosis, including those in the development pipeline. An in silico simulation enabled combing the innumerably large search space to derive multidrug combinations. Through the use of ordinary differential equations (ODE), we constructed an in silico kinetic platform in which the major metabolic pathways in Mycobacterium tuberculosis and the mechanisms of the antituberculosis drugs were integrated into a virtual proteome. The optimized model was used to evaluate 816 triplets from the set of 18 drugs. The experimentally derived cumulative fractional inhibitory concentration (∑FIC) value was within twofold of the model prediction. Bacterial enumeration revealed that a significant number of combinations that were synergistic for growth inhibition were also synergistic for bactericidal effect. The in silico-based screen provided new starting points for testing in a mouse model of tuberculosis, in which two novel triplets and five novel quartets were significantly superior to the reference drug triplet of isoniazid, rifampin, and ethambutol (HRE) or the quartet of HRE plus pyrazinamide (HREZ).


Assuntos
Antituberculosos/uso terapêutico , Etambutol/uso terapêutico , Isoniazida/uso terapêutico , Rifampina/uso terapêutico , Tuberculose/tratamento farmacológico , Animais , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
2.
Adv Appl Bioinform Chem ; 6: 1-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23413046

RESUMO

The equity of a drug target is principally evaluated by its genetic vulnerability with tools ranging from antisense- and microRNA-driven knockdowns to induced expression of the target protein. In order to upgrade the process of antibacterial target identification and discern its most effective type of inhibition, an in silico toolbox that evaluates its genetic and chemical vulnerability leading either to stasis or cidal outcome was constructed and validated. By precise simulation and careful experimentation using enolpyruvyl shikimate-3-phosphate synthase and its specific inhibitor glyphosate, it was shown that genetic knockdown is distinct from chemical knockdown. It was also observed that depending on the particular mechanism of inhibition, viz competitive, uncompetitive, and noncompetitive, the antimicrobial potency of an inhibitor could be orders of magnitude different. Susceptibility of Escherichia coli to glyphosate and the lack of it in Mycobacterium tuberculosis could be predicted by the in silico platform. Finally, as predicted and simulated in the in silico platform, the translation of growth inhibition to a cidal effect was able to be demonstrated experimentally by altering the carbon source from sorbitol to glucose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA