Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(40): 26211-26219, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36275105

RESUMO

The self-assembly of proteins is crucial in many biomedical applications. This work deals with understanding the role of cold atmospheric plasma (CAP) on the self-assembly of two different proteins present in the serum - BSA and hemoglobin and to elucidate the process associated with the direct application of physical plasma on or in the human (or animal) body, which has implications in therapeutics. The work has been corroborated by several spectroscopic studies such as fluorescence spectroscopy, circular dichroism spectroscopy, and SEM analysis. Through steady-state fluorescence spectroscopy and by following the tryptophan fluorescence, we observed that the emission intensity was quenched for the protein when treated with plasma radiation. Circular dichroism spectroscopy revealed that the structure of the protein was altered both in the case of BSA and hemoglobin. N-Acetyl tryptophanamide (NATA), which resembles the tryptophan in the protein, was treated with CAP and we observed the similar quenching of fluorescence as in the proteins, indicating that the protein underwent self-assembly. Time-resolved fluorescence spectroscopy with a decrease in the lifetime revealed that the protein self-assembly was promoted with CAP treatment, which was also substantiated by SEM micrographs. The ROS/RNS produced in the CAP has been correlated with the protein self-assembly. This work will help to design protein self-assembled systems, and in the future, may bring possibilities of creating novel biomaterials with the help of plasma radiation.

2.
RSC Adv ; 12(15): 9466-9472, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424902

RESUMO

Cold atmospheric pressure (CAP) plasma has a profound effect on protein-protein interactions. In this work, we have highlighted the deactivation of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike protein by CAP plasma treatment. Complete deactivation of spike protein binding to the human ACE2 protein was observed within an exposure time of 5 minutes which is correlated to the higher concentration of hydrogen peroxide formation due to the interaction with the reactive oxygen species present in the plasma. On the other hand, we have established that CAP plasma is also capable of degrading RNA of SARS-CoV-2 virus which is also linked to hydrogen peroxide concentration. The reactive oxygen species is produced in the plasma by using noble gases such as helium, in the absence of any other chemicals. Therefore, it is a green process with no chemical waste generated and highly advantageous from the environmental safety prospects. Results of this work could be useful in designing plasma-based disinfection systems over those based on environmentally hazardous chemical-based disinfection and biomedical applications.

3.
Nanotechnology ; 32(24)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33684907

RESUMO

We report a novel single-step synthesis method of metal/metal oxide composites and transformation of the shape of the oxide material by Plasma-Liquid Interaction. Considering the potential applications of noble metal nanoparticle decorated copper oxide composites, we synthesize Au/CuO micro/nanocomposites by generating plasma between two copper electrodes inside a gold precursor (HAuCl4) solution. Simultaneous synthesis of CuO and Au nanoparticles from the electrode material and from the precursor solution respectively is possible due to the interaction of energetic electrons and other active species formed in the plasma zone. Moreover, the process does not require any external stabilizing and reducing chemical agents. The method provides a remarkable tunability of the materials' physical and chemical properties by only controlling the precursor solution concentration. By controlling process parameters, the shape of CuO particles can be transformed from spindles to sheet-like and the size of Au nanoparticles can also be varied. It influences the particles' specific surface area and total pore volume. Plasmonic property of Au nanoparticles is also observed i.e. optical tunability can be achieved. The process is found to be effective for synthesis of desired nanomaterials having various energy storage and solar light-driven photocatalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA