Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; : 6575-6584, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885443

RESUMO

Lead-free double perovskite nanocrystals (A2B'(III)B″(I)X6 NCs) address the instability and toxicity concerns of lead-based counterparts, but their device performance is limited by subpar absorption and unexplored carrier dynamics. Impurity ion doping offers a route to tune electrical conductivity and charge carrier transport. Herein, we synthesized Cu-doped Cs2AgBiBr6 (CABB) nanocrystals using a hot-injection approach and investigated the charge carrier's dynamics through ultrafast pump-probe spectroscopy. Copper introduction into the CABB lattice enhanced absorption in the near-infrared region and introduced sub-band gap defect states in CABB NCs. The transient absorption study revealed a faster bleach decay with increased copper doping, as a result of charge transfer from the conduction band to copper defect states. Also, an optical pump terahertz probe study displays higher photoconductivity and mobility in Cu-doped CABB NCs. Slower mobility decay in Cu-doped systems was attributed to the charge carrier's entrapment at the defect state. These findings suggest that copper-doped CABB is a superior contender for optoelectronic applications over conventional CABB.

2.
J Phys Chem Lett ; 15(19): 5056-5062, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38701388

RESUMO

Plasmonic semiconductors are promising candidates for developing energy conversion devices due to their tunable band gap, cost-effectiveness, and nontoxicity. Such materials exhibit remarkable capabilities for harvesting infrared photons, which constitute half of the solar energy spectrum. Herein, we have synthesized near-infrared (NIR) active CuxInyS nanocrystals and CuxInyS/CdS heterostructure nanocrystals (HNCs) to investigate plasmon-induced charge transfer dynamics on an ultrafast time scale. Employing femtosecond transient absorption spectroscopy, we demonstrate that upon exciting the HNCs with sub-band gap NIR photons (λ = 840 nm), the hot holes are generated in the valence band of plasmonic CuxInyS and transferred to the adjacent semiconductor. The decreased signal intensity and accelerated hole phonon relaxation dynamics for HNCs reveal efficient transfer of plasmon-induced hot carriers from CuxInyS to CdS under both 840 and 350 nm laser excitations, providing a pathway for enhanced carrier utilization. These findings shed light on the potential of ternary chalcogenides in plasmonic applications, highlighting efficient hot carrier extraction to adjacent semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA