Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 245: 120613, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738940

RESUMO

Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.

2.
Adv Mater ; : e2307950, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772325

RESUMO

The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.

3.
Chemosphere ; 338: 139557, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478994

RESUMO

The use of reverse osmosis (RO) for water reclamation has become an essential part of the water supply owing to the ever-increasing water demand and the utmost performance of the RO membranes. Despite the global RO implementation, its inferior rejection against low molecular weight contaminants of emerging concerns (CECs) (i.e., N-nitrosodimethylamine (NDMA)) and propensity to fouling remain bottle-neck thus affecting process robustness for water reuse. This study aims to enhance both the rejection and antifouling properties of the RO membrane. Herein for the first time, we report RO membrane modification using polydopamine nanospheres (PDAns) followed by aminated-graphene oxide (AGO) deposition as an effective approach to overcome these challenges. The modification of the RO membrane using PDAns-AGO resulted in 89.3 ± 2.7% rejection compared to the pristine RO membrane which demonstrated 69.2 ± 2.1% NDMA rejection. This significant improvement can be ascribed to the plugging and shielding of defective areas (formed during interfacial polymerization) of the polyamide layer through active PDAns and AGO layers and to the added sieving mechanism that arose through narrow channels of the AGO owing to its reduction. Moreover, the in-situ and non-destructive fouling monitoring using optical coherence tomography (OCT) revealed that the PDAns-AGO coating enhanced both the anti-scaling and anti-biofouling characteristics. The improved hydrophilicity and bactericidal effect together with roughness and surface charge suppression synergistically enhanced anti-fouling properties. This study provides a new direction for safe and cost-effective water reuse practices. The membrane with high selectivity against CECs such as NDMA has the potential to eliminate permeate staging using second pass RO and other advanced oxidation processes which are utilized as a tertiary treatment to make reclaimed water suitable for potable/non-potable application.


Assuntos
Incrustação Biológica , Nanosferas , Purificação da Água , Dimetilnitrosamina , Incrustação Biológica/prevenção & controle , Osmose , Purificação da Água/métodos , Membranas Artificiais , Água
4.
Membranes (Basel) ; 13(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36676821

RESUMO

Water pollution caused by oil spills or sewage discharges has become a serious ecological environmental issue. Despite the membrane separation technique having a promising application in wastewater purification, the membrane fabrication method and separation robustness have remained unsatisfactory until now. Herein, we developed a novel strategy, spacer-assisted sequential phase conversion, to create a patterned polyvinylidene fluoride@polypropylene (P-PVDF@PP) substrate membrane with a multiscale roughened surface. Based on that surface structure, the underwater oil resistance behavior of the P-PVDF@PP membrane was improved. Moreover, owing to the abundant active sites on the P-PVDF@PP surface, the polydopamine/P-PVDF@PP (PDA/P-PVDF@PP) Janus membrane could be readily fabricated via wet chemical modification, which exhibited excellent switchable oil-water separation performance. Regarding surfactant-stabilized oil-water emulsion, the as-prepared PDA/P-PVDF@PP Janus membrane also had robust separation efficiency (as high as 99% in the n-hexane/water, chloroform/water, and toluene/water emulsion separation cases) and desirable reusability. Finally, the underlying mechanism of emulsion separation in the PDA/P-PVDF@PP Janus membrane was specified. The as-designed PDA/P-PVDF@PP Janus membrane with high-efficiency oil-water separation shows potential application in oily wastewater treatment, and the developed fabrication method has implications for the fabrication of advanced separation membranes.

5.
Water Res ; 209: 117954, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34922105

RESUMO

In this study, we report the use of nanobubbles (NBs) as a simple and facile approach to effectively delay scaling in membrane distillation (MD) during the treatment of highly saline feed (100 g L-1). Unlike conventional gas bubbling in MD for improving the hydrodynamic flow conditions in the feed channel, here we generated air NBs with an average size of 128.81 nm in the feed stream and examined their impact on membrane scaling inhibition during MD operation. Due to their small size, neutral buoyancy, and negative surface charge, NBs remain in suspension for a longer time (14 days), providing homogenous mixing throughout the entire feed water. The MD performance results revealed that severe membrane scaling happened during the DCMD treatment of high salinity brine in the absence of nanobubbles, which dramatically reduced the distillate flux to zero after 13 h. A one-time addition of air NBs in the saline feed significantly reduced salt precipitation and crystal deposition on the PVDF membrane surface, delayed the occurrence of flux decline, prevented membrane wetting, thereby prolonging the effective MD operating time. With similar feed concentration and operating conditions, only 63% flux decline after 98 h operation was recorded in nanobubble-assisted MD. Two key explanations were suggested for the delayed membrane scaling upon addition of air NBs in the MD feed: (1) NB-induced turbulent flow in the feed channel that increases the surface shear forces at the membrane surface, alleviating both temperature and concentration polarization effect, (2) electrostatic attractions of the counterions to the negatively charged NBs, which reduces the availability of these ions in the bulk feed for scale formation.

6.
ACS Appl Mater Interfaces ; 13(3): 3805-3815, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33444505

RESUMO

Herein, we demonstrate the desalination performance of a solar-driven membrane distillation (MD) process, where upon light illumination, a highly localized heating of plasmonic titanium nitride nanoparticles (TiN NPs) immobilized on a hydrophobic membrane provides the thermal driving force for the MD operation. The engineered TiN photothermal membrane induces vapor generation directly at the feed-membrane interface upon solar irradiation, thereby eliminating the need to heat the entire bulk feed water. The results indicate that the average vapor flux through the TiN photothermal membrane without any auxiliary feed heating was recorded as 1.01 L m-2 h-1, which corresponds to the solar-thermal efficiency of 66.7% under 1 sun solar irradiance. The superior performance of the photothermal MD process is attributed to the broadband optical absorption and excellent light-to-heat conversion properties of the plasmonic TiN NP layer, which enabled efficient interfacial water heating at the membrane surface and increased the net driving force for vapor transport. Results also reveal the high mechanical stability of the TiN photothermal coating layer during long-term photothermal MD operations. We believe that the TiN photothermal membranes fabricated using a relatively inexpensive and nontoxic material via the simple technique with high stability and photothermal conversion efficiency will provide a path forward for developing the solar-driven MD applications.

7.
Water Res ; 174: 115600, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088385

RESUMO

A hierarchically assembled superomniphobic membrane with three levels of reentrant structure was designed and fabricated to enable effective treatment of low surface tension, hypersaline oily wastewaters using direct contact membrane distillation (DCMD). The overall structure is a combination of macro corrugations obtained by surface imprinting, with the micro spherulites morphology achieved through the applied phase inversion method and nano patterns obtained by fluorinated Silica nanoparticles (SiNPs) coating. This resulted in a superomniphobic membrane surface with remarkable anti-wetting properties repelling both high surface tension water and low surface tension oils. Measurements of contact angle (CA) with DI water, an anionic surfactant, oil, and ethanol demonstrated a robust wetting resistance against low surface tension liquids showing both superhydrophobicity and superoleophobicity. CA values of 160.8 ± 2.3° and 154.3 ± 1.9° for water and oil were obtained, respectively. Calculations revealed a high liquid-vapor interface for the fabricated membrane with more than 89% of the water droplet contact area being with air pockets entrapped between adjacent SiNPs and only 11% come into contact with the solid membrane surface. Moreover, the high liquid-vapor interface imparts the membrane with high liquid repellency, self-cleaning and slippery effects, characterized by a minimum droplet-membrane interaction and complete water droplet bouncing on the surface within only 18 ms. When tested in DCMD with synthetic hypersaline oily wastewaters, the fabricated superomniphobic membrane demonstrated stable, non-wetting MD operation over 24 h, even at high concentrations of low surface tension 1.0 mM Sodium dodecyl sulfate and 400 ppm oil, potentially offering a sustainable option for treatment of low surface tension oily industrial wastewater.


Assuntos
Destilação , Purificação da Água , Membranas Artificiais , Óleos , Tensão Superficial , Águas Residuárias
8.
Environ Sci Technol ; 53(9): 4948-4958, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30978006

RESUMO

Electrospun nanofiber membranes (ENMs) have garnered increasing interest due to their controllable nanofiber structure and high void volume fraction properties in membrane distillation (MD). However, MD technology still faces limitations mainly due to low permeate flux and membrane wetting for feeds containing low surface tension compounds. Perfluorinated superhydrophobic membranes could be an alternative, but it has negative environmental impacts. Therefore, other low surface energy materials such as silica aerogel and polydimethylsiloxane (PDMS) have great relevancy in ENMs fabrication. Herein, we have reported the high flux and nonwettability of ENMs fabricated by electrospraying aerogel/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) over electrospinning polyvinylidene fluoride- co-hexafluoropropylene (PVDF-HFP) membrane (E-PH). Among various concentrations of aerogel, the 30% aerogel (E-M3-A30) dual layer membrane achieved highest superhydrophobicity (∼170° water contact angle), liquid entry pressure (LEP) of 129.5 ± 3.4 kPa, short water droplet bouncing performance (11.6 ms), low surface energy (4.18 ± 0.27 mN m-1) and high surface roughness ( Ra: 5.04 µm) with re-entrant structure. It also demonstrated nonwetting MD performance over a continuous 7 days operation of saline water (3.5% of NaCl), high antiwetting with harsh saline water containing 0.5 mM sodium dodecyl sulfate (SDS, 28.9 mN m-1), synthetic algal organic matter (AOM).


Assuntos
Nanofibras , Purificação da Água , Dimetilpolisiloxanos , Destilação , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA