Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404291, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975670

RESUMO

The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.

2.
Adv Healthc Mater ; : e2401117, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848965

RESUMO

The endoplasmic reticulum (ER) plays an important role in protein synthesis and its disruption can cause protein unfolding and misfolding. Accumulation of such proteins leads to ER stress, which ultimately promotes many diseases. Routine screening of ER activity in immune cells can flag serious conditions at early stages, but the current clinically used bio-probes have limitations. Herein, an ER-specific fluorophore based on a biocompatible benzothiadiazole-imine cage (BTD-cage) with excellent photophysical properties is developed. The cage outperforms commercially available ER stains in long-term live cell imaging with no fading or photobleaching over time. The cage is responsive to different levels of ER stress where its fluorescence increases accordingly. Incorporating the bio-probe into an immune disorder model, a 6-, 21-, and 48-fold increase in intensity is shown in THP-1, Raw 246.7, and Jurkat cells, respectively (within 15 min). These results strongly support that this system can be used for rapid visual and selective detection of ER stress. It is envisaged that tailoring molecular interactions and molecular recognition using supramolecular improved fluorophores can expand the library of biological probes for enhanced selectivity and targetability toward cellular organelles.

3.
Angew Chem Int Ed Engl ; 63(31): e202403647, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752721

RESUMO

The discovery of safe platforms that can circumvent the endocytic pathway is of great significance for biological therapeutics that are usually degraded during endocytosis. Here we show that a self-assembled and dynamic macrocycle can passively diffuse through the cell membrane and deliver a broad range of biologics, including proteins, CRISPR Cas9, and ssDNA, directly to the cytosol while retaining their bioactivity. Cell-penetrating macrocycle CPM can be easily prepared from the room temperature condensation of diketopyrrolopyrrole lactams with diamines. We attribute the high cellular permeability of CPM to its amphiphilic nature and chameleonic properties. It adopts conformations that partially bury polar groups and expose hydrophobic side chains, thus self-assembling into micellar-like structures. Its superior fluorescence makes CPM trackable inside cells where it follows the endomembrane system. CPM outperformed commercial reagents for biologics delivery and showed high RNA knockdown efficiency of CRISPR Cas9. We envisage that this macrocycle will be an ideal starting point to design and synthesize biomimetic macrocyclic tags that can readily facilitate the interaction and uptake of biomolecules and overcome endosomal digestion.


Assuntos
Sistemas CRISPR-Cas , Citosol , Humanos , Citosol/metabolismo , DNA/química , DNA/metabolismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Proteínas/química , Proteínas/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Células HeLa , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo
4.
ACS Appl Mater Interfaces ; 16(15): 18245-18251, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564422

RESUMO

Plant synthetic biology is applied in sustainable agriculture, clean energy, and biopharmaceuticals, addressing crop improvement, pest resistance, and plant-based vaccine production by introducing exogenous genes into plants. This technique faces challenges delivering genes due to plant cell walls and intact cell membranes. Novel approaches are required to address this challenge, such as utilizing nanomaterials known for their efficiency and biocompatibility in gene delivery. This work investigates metal-organic frameworks (MOFs) for gene delivery in intact plant cells by infiltration. Hence, small-sized ZIF-8 nanoparticles (below 20 nm) were synthesized and demonstrated effective DNA/RNA delivery into Nicotiana benthamiana leaves and Arabidopsis thaliana roots, presenting a promising and simplified method for gene delivery in intact plant cells. We further demonstrate that small-sized ZIF-8 nanoparticles protect RNA from RNase degradation and successfully silence an endogenous gene by delivering siRNA in N. benthamiana leaves.


Assuntos
Arabidopsis , Estruturas Metalorgânicas , Ácidos Nucleicos , Células Vegetais , Arabidopsis/genética , RNA Interferente Pequeno
5.
Nat Commun ; 15(1): 1575, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383478

RESUMO

The rise of touchless technology, driven by the recent pandemic, has transformed human-machine interaction (HMI). Projections indicate a substantial growth in the touchless technology market, nearly tripling from $13.6 billion in 2021 to an estimated $37.6 billion by 2026. In response to the pandemic-driven shift towards touchless technology, here we show an organic cage-based humidity sensor with remarkable humidity responsiveness, forming the basis for advanced touchless platforms in potential future HMI systems. This cage sensor boasts an ultrafast response/recovery time (1 s/3 s) and exceptional stability (over 800 cycles) across relative humidity (RH) changes from 11% to 95%. The crystal structure's 3D pore network and luxuriant water-absorbing functional groups both inside and outside of the cage contribute synergistically to superior humidity sensing. Demonstrating versatility, we showcase this cage in smart touchless control screens and touchless password managers, presenting cost-effective and easily processable applications of molecularly porous materials in touchless HMI.

6.
J Am Chem Soc ; 146(4): 2313-2318, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232075

RESUMO

Two-dimensional covalent organic frameworks (COFs) with uniform pores and large surface areas are ideal candidates for constructing advanced molecular sieving membranes. However, a fabrication strategy to synthesize a free-standing COF membrane with a high permselectivity has not been fully explored yet. Herein, we prepared a free-standing TpPa-SO3H COF membrane with vertically aligned one-dimensional nanochannels. The introduction of the sulfonic acid groups on the COF membrane provides abundant negative charge sites in its pore wall, which achieve a high water flux and an excellent sieving performance toward water-soluble drugs and dyes with different charges and sizes. Furthermore, the COF membrane exhibited long-term stability, fouling resistance, and recyclability in rejection performance. We envisage that this work provides new insights into the effect of ionic ligands on the design of a broad range of COF membranes for advanced separation applications.

7.
ACS Appl Mater Interfaces ; 16(5): 6614-6622, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38276951

RESUMO

The development of adsorbents with robust molecular discrimination capabilities for halogenated organic compounds (HOCs) holds significant importance due to their potential in adsorptive separation and mitigation of associated health risks. In this study, we report a molecular discrimination behavior based on crystalline hybrid macrocyclic arene H, offering precise capture of cis-trans isomers and length-selective separation of HOCs. The activated H crystals (Hα) demonstrate exceptional discrimination and separation performance by selectively capturing trans-1,2-dichloroethylene (trans-DCE) from cis/trans-isomer mixtures with a high selectivity of 98.8%. Evidenced by single-crystal X-ray diffraction and density functional theory (DFT) calculations, this high adsorption selectivity arises from the formation of more stable complex crystals between H and the preferred guest trans-DCE. Moreover, Hα exhibits the ability to selectively trap size-matched 1,2-dibromoethane (DBE) from mixtures of alkylene dibromides with varying alkane-chain lengths, although their capture and separation are recognized to be difficult as a consequence of low-polarity bonds. The solid-state transformations between guest-free and guest-containing Hα crystals indicate their recyclability, showcasing promising prospects for potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA