Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6341, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284098

RESUMO

Realizing nonlinear optical response in the low photon density limit in solid-state systems has been a long-standing challenge. Semiconductor microcavities in the strong coupling regime hosting exciton-polaritons have emerged as attractive candidates in this context. However, the weak interaction between these quasiparticles has been a hurdle in this quest. Dipolar excitons provide an attractive strategy to overcome this limitation but are often hindered by their weak oscillator strength. The interlayer dipolar excitons in naturally occurring homobilayer MoS2 alleviates this issue owing to their formation via hybridization of interlayer charge transfer exciton with intralayer B exciton. Here we demonstrate the formation of dipolar exciton polaritons in bilayer MoS2 resulting in unprecedented nonlinear interaction strengths. A ten-fold increase in nonlinearity is observed for the interlayer dipolar excitons compared to the conventional A excitons. These highly nonlinear dipolar polaritons will likely be a frontrunner in the quest for solid-state quantum nonlinear devices.

2.
Adv Mater ; 34(15): e2109107, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35165941

RESUMO

Fluorescent proteins (FPs) have recently emerged as a serious contender for realizing ultralow threshold room temperature exciton-polariton condensation and lasing. This contribution investigates the thermalization of FP microcavity exciton-polaritons upon optical pumping under ambient conditions. Polariton cooling is realized using a new FP molecule, called mScarlet, coupled strongly to the optical modes in a Fabry-Pérot cavity. Interestingly, at the threshold excitation energy (fluence) of ≈9 nJ per pulse (15.6 mJ cm-2 ), an effective temperature is observed, Teff  ≈ 350 ± 35 K close to the lattice temperature indicative of strongly thermalized exciton-polaritons at equilibrium. This efficient thermalization results from the interplay of radiative pumping facilitated by the energetics of the lower polariton branch and the cavity Q-factor. Direct evidence for dramatic switching from an equilibrium state into a metastable state is observed for the organic cavity polariton device at room temperature via deviation from the Maxwell-Boltzmann statistics at k‖  = 0 above the threshold. Thermalized polariton gases in organic systems at equilibrium hold substantial promise for designing room temperature polaritonic circuits, switches, and lattices for analog simulation.


Assuntos
Temperatura
3.
Sci Adv ; 7(44): eabj0997, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714684

RESUMO

Polaritons in organic systems has shown the potential to modify chemical properties and to mediate long-range energy transfer between individual chromophores, among other capabilities. Here, we demonstrate that strong coupling and formation of organic exciton-polaritons can be used to selectively tune the isomer emission of organic molecules. By taking advantage of their delocalized and hybrid character, polaritons emerging in the strong coupling regime open a new relaxation pathway that allows for an efficient funneling of the excitation between the molecular isomers. We implement this by strong coupling to trans-DCS (E-4-dimethylamino-4'cyanostilbene)molecules, which present two isomers in different amounts when immersed in a polymer matrix. Thanks to this new relaxation pathway, the photoexcitation that is first shared by the common polaritonic mode is then selectively funneled to the excited states of one of the isomers, recognizing pure emission from the isomeric states that do not contribute to emission under normal conditions.

4.
Adv Mater ; 32(28): e2002127, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32484288

RESUMO

Amorphous molecular solids are inherently disordered, exhibiting strong exciton localization. Optical microcavities containing such disordered excitonic materials have been theoretically shown to support both propagating and localized exciton-polariton modes. Here, the ultrastrong coupling of a Bloch surface wave photon and molecular excitons in a disordered organic thin film at room temperature is demonstrated, where the major fraction of the polaritons are propagating states. The delocalized exciton-polariton has a group velocity as high as 3 × 107 m s-1 and a lifetime of 500 fs, leading to propagation distances of over 100 µm from the excitation source. The polariton intensity shows a halo-like pattern that is due to self-interference of the polariton mode, from which a coherence length of 20 µm is derived and is correlated with phase breaking by polariton scattering. The demonstration of ultralong-range exciton-polariton transport at room temperature promises new photonic and optoelectronic applications such as efficient energy transfer in disordered condensed matter systems.

5.
Nat Nanotechnol ; 14(11): 1024-1028, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31548689

RESUMO

Exciton polaritons that arise through the strong coupling of excitons and cavity photons are used to demonstrate a wide array of fundamental phenomena and potential applications that range from Bose-Einstein-like condensation1-3 to analogue Hamiltonian simulators4,5 and chip-scale interferometers6. Recently, the two-dimensional (2D) transition metal dichalcogenides (TMDs), because of their large exciton binding energies, oscillator strength and valley degree of freedom, have emerged as a very attractive platform to realize exciton polaritons at elevated temperatures7. Achieving the electrical injection of polaritons is attractive both as a precursor to realizing electrically driven polariton lasers as well as for high speed light-emitting diodes (LEDs) for communication systems. Here, we demonstrate an electrically driven polariton LED that operates at room temperature using monolayer tungsten disulfide (WS2) as the emissive material. The extracted external quantum efficiency is ~0.1% and is comparable to recent demonstrations of bulk organic8 and carbon nanotube-based polariton electroluminescence (EL) devices9. The possibility to realize electrically driven polariton LEDs in atomically thin semiconductors at room temperature presents a promising step towards achieving an inversionless electrically driven laser in these systems as well as for ultrafast microcavity LEDs using van der Waals (vdW) materials.

6.
Nano Lett ; 19(10): 6886-6893, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31487988

RESUMO

Spin-forbidden intravalley dark excitons in tungsten-based transition-metal dichalcogenides (TMDCs), because of their unique spin texture and long lifetime, have attracted intense research interest. Here, we show that we can control the dark exciton electrostatically by dressing it with one free electron or free hole, forming the dark trions. The existence of the dark trions is suggested by the unique magneto-photoluminescence spectroscopy pattern of the boron nitride (BN)-encapsulated monolayer WSe2 device at low temperature. The unambiguous evidence of the dark trions is further obtained by directly resolving the radiation pattern of the dark trions through back focal plane imaging. The dark trions possess a binding energy of ∼15 meV, and they inherit the long lifetime and large g-factor from the dark exciton. Interestingly, under the out-of-plane magnetic field, dressing the dark exciton with one free electron or hole results in distinctively different valley polarization of the emitted photon, as a result of the different intervalley scattering mechanism for the electron and hole. Finally, the lifetime of the positive dark trion can be further tuned from ∼50 ps to ∼215 ps by controlling the gate voltage. The gate-tunable dark trions usher in new opportunities for excitonic optoelectronics and valleytronics.

7.
Nano Lett ; 18(10): 6455-6460, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30160968

RESUMO

Strong light-matter coupling results in the formation of half-light half-matter quasiparticles that take on the desirable properties of both systems such as small mass and large interactions. Controlling this coupling strength in real-time is highly desirable due to the large change in optical properties such as reflectivity that can be induced in strongly coupled systems. Here we demonstrate modulation of strong exciton-photon coupling in a monolayer WS2 through electric field induced gating at room temperature. The device consists of a WS2 field effect transistor embedded inside a microcavity structure which transitions from strong to weak coupling when the monolayer WS2 becomes more n-type under gating. This transition occurs due to the reduction in oscillator strength of the excitons arising from decreased Coulomb interaction in the presence of electrostatically induced free carriers. The possibility to electrically modulate a solid state system at room temperature from strong to weak coupling is highly desirable for realizing low energy optoelectronic switches and modulators operating both in quantum and classical regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA