Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28707, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596113

RESUMO

The soaring rise of electronic and electrical waste (E-waste) leads to significant challenges to the South Asian region, urging for incorporating comprehensive assessment and management strategies. The research dives into the intricacies of E-waste and examines how regulatory barriers, public ignorance, and the limited lifespan of electronic devices all contribute to the significant production of E-waste. This study emphasizes the vital need for ongoing and appropriate management practices by bringing attention to the short lifespan of electronic devices and the resulting generation of E-waste. This work also addresses the increased risks that people who live close to informal recycling sites for electronic waste face, as well as the dangerous substances that are found in them and how they harm the environment and human health. Furthermore, in order to promote circular economies and increase productivity, the study assesses management practices in both developed and developing nations, placing special emphasis on component reuse and recycling. Along with addressing the grave consequences of the illicit E-waste trade on the environment, particularly in developing nations, this review attempts to enlighten stakeholders and policymakers about the vital need for coordinated efforts to address the issues related to E-waste in the South Asian region by offering insights into E-waste assessment and management techniques.

2.
Heliyon ; 7(12): e08530, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917811

RESUMO

The paper aims to study different aspects of liquid fuel production through pyrolysis from agricultural residues, MSW, and e-waste available in Bangladesh. The abundant production of various crops generates massive amounts of residue such as rice straw, wheat straw, rice husk, jute stick, and sugarcane bagasse in Bangladesh have great potential for liquid fuel production for pyrolysis conversion. Bangladesh produces almost 25,000 tons of solid waste per day from urban areas, and Dhaka city alone contributes to one-quarter of all urban waste in the country. The biomass and waste-derived pyrolysis fuel can be successfully used in turbines, boilers, engines and upgraded to high-quality hydrocarbon transportation fuels through distillation. The concise data obtained from the study is anticipated to provide valuable information regarding the effective utilization of municipal solid waste and agricultural residues by using pyrolysis process so that further detailed work on these resources can pave a pathway towards scientific research and significant energy contribution in Bangladesh. The feasibility study has been conducted through physical properties, proximate analysis, elemental analysis, and thermogravimetric analysis of the selected agricultural residues, municipal solid wastes, and plastic e-wastes for pyrolysis conversion in Bangladesh. It has been found that polythene has a better thermochemical potential than rice straw (13.71 MJ/kg) owing to its high calorific value (46.41 MJ/kg). The foremost volatile matter obtained from plastic waste is 98.1 wt.%, and the minimum from rice husk is 57.19 wt.%. The maximum carbon amount is possessed by plastic waste (84.03 wt.%). The ultimate analysis showed that the MSW sample contains more sulfur content than agricultural residue and e-waste, whereas the case is the opposite in terms of oxygen. Rice husk and tire waste have the highest ash content, i.e., 19.70 and 4.38 (wt.%), respectively, indicating a significant amount of unwanted material. TGA examination of feedstock revealed that the majority of mass loss occurred between 250-450 °C for agricultural residue attributed to the release of volatile materials during the formation of char and the evolution of pyrolysis gases. For MSW samples, the range varies between 350-500 °C, which is the appropriate temperature for optimizing liquid oil production in plastic pyrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA