Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112808

RESUMO

Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous obstructive diseases characterized by airflow limitations and are recognized as significant contributors to fatality all over the globe. Asthma accounts for about 4, 55,000 deaths, and COPD is the 3rd leading contributor of mortality worldwide. The pathogenesis of these two obstructive disorders is complex and involves numerous mechanistic pathways, including inflammation-mediated and non-inflammation-mediated pathways. Among all the pathological categorizations, programmed cell deaths (PCDs) play a dominating role in the progression of these obstructive diseases. The two major PCDs that are involved in structural and functional remodeling in the progression of asthma and COPD are Pyroptosis and Ferroptosis. Pyroptosis is a PCD mechanism mediated by the activation of the Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, leading to the maturation and release of Interleukin-1ß and Interleukin-18, whereas ferroptosis is a lipid peroxidation-associated cell death. In this review, the major molecular pathways contributing to these multifaceted cell deaths have been discussed, and crosstalk among them regarding the pathogenesis of asthma and COPD has been highlighted. Further, the possible therapeutic approaches that can be utilized to mitigate both cell deaths at once have also been illustrated.

2.
Pulm Pharmacol Ther ; 87: 102319, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216596

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal progressive and irreversible ailment associated with the proliferation of fibroblast and accumulation of extracellular matrix (ECM) with gradual scarring of lung tissue. Despite several research studies, the treatments available are not efficient enough for the reversal of the disease and are constantly in progress. No drugs other than Pirfenidone and Nintedanib have been approved for the treatment of IPF, necessitating the exploration of novel therapeutic strategies. Recently, lipid-based nanoparticles (LNPs) have drawn more attention because of their potential to enhance the solubility of drugs, cross biological barriers of the lungs and specifically target lung fibrotic tissues, overcoming various challenges in treating IPF. LNPs offer a versatile platform to encapsulate a wide range of drugs, both hydrophilic and lipophilic, improving their bioavailability, allowing sustained release and reducing toxicity, which radiates their significant role in addressing the complexities of IPF. This review summarizes the pathogenesis and conventional treatment of idiopathic pulmonary fibrosis, along with their drawbacks. The review focuses on different types of lipid-based nanoparticles that have been tested in the treatment of idiopathic pulmonary fibrosis, including nanoemulsions, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, niosomes and lipid-polymer hybrid nanoparticles. The review also highlights the future prospects that can offer a potential approach for developing novel strategies to treat idiopathic pulmonary fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA