Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 34, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596803

RESUMO

The γ-aminobutyric acid type B (GABAB) receptor is a prototypical family C G protein-coupled receptor (GPCR) that plays a key role in the regulation of synaptic transmission. Although growing evidence suggests that GPCR signaling in neurons might be highly organized in time and space, limited information is available about the mechanisms controlling the nanoscale organization of GABAB receptors and other GPCRs on the neuronal plasma membrane. Using a combination of biochemical assays in vitro, single-particle tracking, and super-resolution microscopy, we provide evidence that the spatial organization and diffusion of GABAB receptors on the plasma membrane are governed by dynamic interactions with filamin A, which tethers the receptors to sub-cortical actin filaments. We further show that GABAB receptors are located together with filamin A in small nanodomains in hippocampal neurons. These interactions are mediated by the first intracellular loop of the GABAB1 subunit and modulate the kinetics of Gαi protein activation in response to GABA stimulation.


Assuntos
Receptores de GABA-B , Receptores de GABA , Receptores de GABA/metabolismo , Filaminas , Receptores de GABA-B/metabolismo , Membrana Celular/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Methods Mol Biol ; 2578: 143-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152285

RESUMO

While an ever-increasing number of protein-protein interactions were studied by peptide microarrays with great success, array-based investigations of transiently binding proteins, such as HDACs, and precise binding quantification, remained challenging. Here, we present an updated protocol for the preparation and use of peptide microarrays including the necessary adjustments for simple semi-quantitative and precise measurements across affinity ranges. This procedure describes the mass spectrometric controlled preparation of peptide microarrays in µSPOT format, and their application in binding profiling of recombinant, as well as endogenous, native proteins. We further highlight how cross-linking, blocking, and enzyme stalling can be leveraged to enhance sensitivity and describe how in situ on-chip binding neutralization can enhance the predictive value and robustness of the binding readout. Finally, we included examples for the integration of precise biophysical binding readouts that complement the traditional array-based binding assays.


Assuntos
Peptídeos , Proteínas , Espectrometria de Massas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise Serial de Proteínas/métodos
3.
Angew Chem Int Ed Engl ; 61(30): e202202078, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35421279

RESUMO

Visualization of inhibitory synapses requires protocol tailoring for different sample types and imaging techniques, and usually relies on genetic manipulation or the use of antibodies that underperform in tissue immunofluorescence. Starting from an endogenous ligand of gephyrin, a universal marker of the inhibitory synapse, we developed a short peptidic binder and dimerized it, significantly increasing affinity and selectivity. We further tailored fluorophores to the binder, yielding "Sylite"-a probe with outstanding signal-to-background ratio that outperforms antibodies in tissue staining with rapid and efficient penetration, mitigation of staining artifacts, and simplified handling. In super-resolution microscopy Sylite precisely localizes the inhibitory synapse and enables nanoscale measurements. Sylite profiles inhibitory inputs and synapse sizes of excitatory and inhibitory neurons in the midbrain and combined with complimentary tracing techniques reveals the synaptic connectivity.


Assuntos
Neurônios , Sinapses , Encéfalo
4.
STAR Protoc ; 2(3): 100605, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34189471

RESUMO

Protein-peptide interactions are involved in many fundamental cellular functions and constitute promising drug targets. Here, we provide a detailed protocol for the cost-effective preparation of a cellulose-based solid support for synthesis of nanoscale to micromolar-scale peptide libraries. Their subsequent use for high-throughput protein interaction screening as well as affinity determination in solution provides binding data for thousands of unique peptides with a turnover of 1 to 2 weeks, thereby facilitating in vitro assessment and development of high-affinity binders. For complete details on the use and execution of this protocol, please refer to Schulte et al., (2020).


Assuntos
Biblioteca de Peptídeos , Ligação Proteica , Temperatura
5.
Microorganisms ; 9(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946808

RESUMO

Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an "LLGRMKG" motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide "GSLLGRMKGA" binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies "SLLGRM" as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes.

6.
iScience ; 24(1): 101898, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33364586

RESUMO

Protein-protein interactions (PPIs) are of fundamental importance for our understanding of physiology and pathology. PPIs involving short, linear motifs play a major role in immunological recognition, signaling, and regulation and provide attractive starting points for pharmaceutical intervention. Yet, state-of-the-art protein-peptide affinity determination approaches exhibit limited throughput and sensitivity, often resulting from ligand immobilization, labeling, or synthesis. Here, we introduce a high-throughput method for in-solution analysis of protein-peptide interactions using a phenomenon called temperature related intensity change (TRIC). We use TRIC for the identification and fine-mapping of low- and high-affinity protein interaction sites and the definition of sequence binding requirements. Validation is achieved by microarray-based studies using wild-type and mutated recombinant protein and the native protein within tissue lysates. On-chip neutralization and strong correlation with structural data establish TRIC as a quasi-label-free method to determine binding affinities of unmodified peptide libraries with large dynamic range.

7.
Front Mol Neurosci ; 12: 162, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293385

RESUMO

γ-aminobutyric acid type A receptors (GABAARs) are the major mediators of synaptic inhibition in the brain. Aberrant GABAAR activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer's and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABAARs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABAAR subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABAAR-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABAAR numbers and clustering, modifying neuronal transmission. Interference with GABAAR trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABAAR to AP2 increase the surface concentration of GABAAR clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABAAR accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABAAR modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA