Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 130: 111709, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377857

RESUMO

Methotrexate (MTX), a chemotherapeutic antimetabolite, has been linked to cognitive impairment in cancer patients. MTX-induced metabolic pathway disruption may result in decreased antioxidant activity and increased oxidative stress, influencing hippocampal neurogenesis and microglial activation. Nuclear factor-kappa B (NF-κB), an oxidative stress byproduct, has been linked to MTX toxicity via the activation of NLRP3 inflammasome signaling. Macrophage activation and polarization plays an important role in tissue injury. This differentiation may be mediated via either the Toll-like receptor 4 (TLR4) or NLRP3 inflammasome. Interestingly, Canagliflozin (CANA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor has been recently reported to exert anti-inflammatory effects by modulating macrophage polarization balance. This study aimed to investigate CANA's protective effect against MTX-induced cognitive impairment, highlighting the possible involvement of TLR4/ NF-κB crosstalk with NLRP3 inflammasome activation and macrophage polarization. Forty-eight Male Wistar rats were divided into 4 groups; (1) received saline orally for 30 days and intravenously on days 8 and 15. (2) received Canagliflozin (CANA; 20 mg/kg/day; p.o.) for 30 days. (3) received MTX (75 mg/kg, i.v.) on day 8 and 15, then they were injected with four i.p. injections of leucovorin (LCV): the first dose was 6 mg/ kg after 18 h, and the remaining doses were 3 mg/kg after 26, 42, and 50 h of MTX administration. (4) received MTX and LCV as in group 3 in addition to CANA as in group 2. MTX-treated rats showed cognitive deficits in spatial and learning memory as evidenced in the novel object recognition and Morris water maze tests. MTX exerted an oxidative effect which was evident by the increase in MDA and decline in SOD, GSH and GPx. Moreover, it exerted an inflammatory effect via elevated caspase-1, IL-1ß and IL-8. CANA treatment restored cognitive ability, reduced MTX-induced oxidative stress and neuroinflammation via attenuation of TLR4/NF-κB/NLRP3 signaling, and rebalanced macrophage polarization by promoting the M2 phenotype. Hence, targeting molecular mechanisms manipulating macrophage polarization may offer novel neuroprotective strategies for preventing or treating MTX-induced immune modulation and its detrimental sequel.


Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Humanos , Masculino , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Metotrexato/toxicidade , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Canagliflozina , Ratos Wistar , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Macrófagos/metabolismo
2.
Neuropharmacology ; 223: 109293, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272443

RESUMO

Although vast progress has been made to understand the pathogenesis of depression, existing antidepressant remedies, with several adverse effects, are not fully adequate. Interestingly, new emerging theories implicating an altered HPA-axis, tryptophan metabolism, neuroinflammation and altered gut integrity were proposed to further identify novel therapeutic targets. Along these lines, canagliflozin (CAN), a novel antidiabetic medication with anti-inflammatory and neuroprotective activity may present an effective treatment for depression; nevertheless, no studies have explored its effect on depressive disorder yet. To this end, this study aimed to investigate the possible antidepressant activity of CAN in CUMS and the mechanisms underlying its action on the gut-brain inflammation axis as well as the alteration in the TRY/KYN pathway in addition to its role in modulating the autophagic signaling cascade. Interestingly, CAN successfully attenuated the CUMS-induced elevations in despair and anhedonic behaviors as well as the elevated serum CORT. Furthermore, it enhanced gut integrity via hampering the CUMS-induced colonic inflammation and amending colonic tight junction proteins. The enhanced gut integrity was further corroborated by a notable anti-inflammatory and neuroprotective activity manifested via the observed mitigation of immune cell activation in addition to IDO hippocampal protein content and promotion of the autophagy cascade. Our findings postulate the possible anti-inflammatory and neuroprotective effects of CAN and the implication of TRY/KYN and AMPK/mTOR signaling pathways in the CUMS-induced MDD. Hence, this study shed light to the promising role of CAN in the augmentation of the current antidepressant treatments.


Assuntos
Depressão , Estresse Psicológico , Humanos , Animais , Depressão/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Canagliflozina/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Autofagia , Modelos Animais de Doenças , Serina-Treonina Quinases TOR/metabolismo
3.
Toxicol Appl Pharmacol ; 404: 115184, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777238

RESUMO

Cisplatin (CIS)-mediated nephrotoxicity is induced via transforming growth factor-beta (TGF-ß) and TGF-ß-activated kinase (TAK1). TGF-ß and TAK1 are known to interact with microRNA-let-7b and microRNA-26b, respectively. Additionally, TGF-ß1 is reported to down-regulate the autophagy marker microtubule-associated protein 1 light chain 3-II (LC3-II) through upregulation of microRNA-34a. Pentoxifylline (PTX) anti-inflammatory effects are mediated via suppressing TGF-ß and regulating mammalian target of rapamycin (mTOR). The current study aimed to investigate the involvement of microRNAs let-7b, 26b, and 34a, and the modulating impact of PTX on CIS-induced nephrotoxicity. Moreover, we aimed at examining the ability of PTX to interact with TGF-ß receptor-1 (TGFßR-1), and TAK1, and examine its ability to downgrade the previously reported toxicities. Hence, the expression of the aforementioned microRNAs, and protein levels of TGFßR-1, TGF-ß1, TAK1, mTOR, LC3-II, and NF-κB were assessed. Molecular docking studies of PTX on TGFßR-1 and TAK1 were also executed. CIS induced TGF-ß1, with down-regulation of microRNA-let-7b and -26b, and up-regulation of microRNA-34a. TGFßR-1, TAK1, and mTOR levels were increased, while LC3-II level was decreased. PTX significantly protected renal cells against CIS-induced changes as indicated by reverting the level of the investigated parameters, while exhibiting an antagonistic effect on TGFßR-1 and TAK1. Our results postulate a possible role of epigenetic regulation of CIS-induced nephrotoxicity through the investigated microRNAs proposing them as potential future targets for controlling this serious toxicity. PTX was able to shield CIS-induced toxicity possibly through blocking TGF-ß pathway, while promoting autophagy in a TAK1 independent manner with the involvement of the examined microRNAs.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , MicroRNAs/metabolismo , Pentoxifilina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Sítios de Ligação , Cisplatino/toxicidade , Nefropatias/induzido quimicamente , MAP Quinase Quinase Quinases/genética , Masculino , MicroRNAs/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Distribuição Aleatória , Ratos , Serina-Treonina Quinases TOR/genética , Fator de Crescimento Transformador beta/genética
4.
Neuropsychiatr Dis Treat ; 11: 2887-901, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26622178

RESUMO

The molecular mechanisms underlying stress-induced depression have not been fully outlined. Hence, the current study aimed at testing the link between behavioral changes in chronic mild stress (CMS) model and changes in hippocampal energy metabolism and the role of paroxetine (PAROX) in ameliorating these changes. Male Wistar rats were divided into three groups: vehicle control, CMS-exposed rats, and CMS-exposed rats receiving PAROX (10 mg/kg/day intraperitoneally). Sucrose preference, open-field, and forced swimming tests were carried out. Corticosterone (CORT) was measured in serum, while adenosine triphosphate and its metabolites, cytosolic cytochrome-c (Cyt-c), caspase-3 (Casp-3), as well as nitric oxide metabolites (NOx) were measured in hippocampal tissue homogenates. CMS-exposed rats showed a decrease in sucrose preference as well as body weight compared to control, which was reversed by PAROX. The latter further ameliorated the CMS-induced elevation of CORT in serum (91.71±1.77 ng/mL vs 124.5±4.44 ng/mL, P<0.001) as well as the changes in adenos-ine triphosphate/adenosine diphosphate (3.76±0.02 nmol/mg protein vs 1.07±0.01 nmol/mg protein, P<0.001). Furthermore, PAROX reduced the expression of Cyt-c and Casp-3, as well as restoring NOx levels. This study highlights the role of PAROX in reversing depressive behavior associated with stress-induced apoptosis and changes in hippocampal energy metabolism in the CMS model of depression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA