Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 4(4): zcac034, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36348939

RESUMO

Emerging evidence associates translation factors and regulators to tumorigenesis. However, our understanding of translational changes in cancer resistance is still limited. Here, we generated an enzalutamide-resistant prostate cancer (PCa) model, which recapitulated key features of clinical enzalutamide-resistant PCa. Using this model and poly(ribo)some profiling, we investigated global translation changes that occur during acquisition of PCa resistance. We found that enzalutamide-resistant cells exhibit an overall decrease in mRNA translation with a specific deregulation in the abundance of proteins involved in mitochondrial processes and in translational regulation. However, several mRNAs escape this translational downregulation and are nonetheless bound to heavy polysomes in enzalutamide-resistant cells suggesting active translation. Moreover, expressing these corresponding genes in enzalutamide-sensitive cells promotes resistance to enzalutamide treatment. We also found increased association of long non-coding RNAs (lncRNAs) with heavy polysomes in enzalutamide-resistant cells, suggesting that some lncRNAs are actively translated during enzalutamide resistance. Consistent with these findings, expressing the predicted coding sequences of known lncRNAs JPX, CRNDE and LINC00467 in enzalutamide-sensitive cells drove resistance to enzalutamide. Taken together, this suggests that aberrant translation of specific mRNAs and lncRNAs is a strong indicator of PCa enzalutamide resistance, which points towards novel therapeutic avenues that may target enzalutamide-resistant PCa.

2.
Sci Rep ; 12(1): 20340, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434072

RESUMO

The majority of nucleated somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs). The process of reprogramming involves epigenetic remodelling to turn on pluripotency-associated genes and turn off lineage-specific genes. Some evidence shows that iPSCs retain epigenetic marks of their cell of origin and this "epigenetic memory" influences their differentiation potential, with a preference towards their cell of origin. Here, we reprogrammed proximal tubule cells (PTC) and tail tip fibroblasts (TTF), from a reprogrammable mouse to iPSCs and differentiated the iPSCs to renal progenitors to understand if epigenetic memory plays a role in renal differentiation. This model allowed us to eliminate experimental variability due to donor genetic differences and transfection of the reprogramming factors such as copy number and integration site. In this study we demonstrated that early passage PTC iPSCs and TTF iPSCs expressed low levels of renal progenitor genes and high levels of pluripotency-associated genes, and the transcriptional levels of these genes were not significantly different between PTC iPSCs and TTF iPSCs. We used ChIP-seq of H3K4me3, H3K27me3, H3K36me3 and global DNA methylation profiles of PTC iPSCs and TTF iPSCs to demonstrate that global epigenetic marks were not different between the cells from the two different sets of tissue samples. There were also no epigenetic differences observed when kidney developmental genes and pluripotency-associated genes were closely examined. We did observe that during differentiation to renal progenitor cells the PTC iPSC-derived renal cells expressed higher levels of three renal progenitor genes compared to progenitors derived from TTF iPSCs but the underlying DNA methylation and histone methylation patterns did not suggest an epigenetic memory basis for this.


Assuntos
Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Reprogramação Celular/genética , Camundongos Transgênicos , Metilação de DNA , Rim
3.
Cell Rep ; 39(11): 110947, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705031

RESUMO

A recurrent chromosomal translocation found in acute myeloid leukemia leads to an in-frame fusion of the transcription repressor ZMYND11 to MBTD1, a subunit of the NuA4/TIP60 histone acetyltransferase complex. To understand the abnormal molecular events that ZMYND11-MBTD1 expression can create, we perform a biochemical and functional characterization comparison to each individual fusion partner. ZMYND11-MBTD1 is stably incorporated into the endogenous NuA4/TIP60 complex, leading to its mislocalization on the body of genes normally bound by ZMYND11. This can be correlated to increased chromatin acetylation and altered gene transcription, most notably on the MYC oncogene, and alternative splicing. Importantly, ZMYND11-MBTD1 expression favors Myc-driven pluripotency during embryonic stem cell differentiation and self-renewal of hematopoietic stem/progenitor cells. Altogether, these results indicate that the ZMYND11-MBTD1 fusion functions primarily by mistargeting the NuA4/TIP60 complex to the body of genes, altering normal transcription of specific genes, likely driving oncogenesis in part through the Myc regulatory network.


Assuntos
Cromatina , Histona Acetiltransferases , Proteínas de Fusão Oncogênica , Fases de Leitura Aberta , Acetilação , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5/genética , Lisina Acetiltransferase 5/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fases de Leitura Aberta/genética , Translocação Genética
4.
Nat Commun ; 13(1): 2844, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606347

RESUMO

The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-ß1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.


Assuntos
Quinase 3 da Glicogênio Sintase , Células Neuroepiteliais , Diferenciação Celular/fisiologia , Córtex Cerebral , Humanos , Células-Tronco , Telencéfalo
5.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118837, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882261

RESUMO

Long non-coding RNAs (lncRNAs) have become increasingly important in the past decade. They are known to regulate gene expression and to interact with chromatin, proteins and other coding and non-coding RNAs. The study of lncRNAs has been challenging due to their low expression and the lack of tools developed to adapt to their particular features. Studies on lncRNAs performed to date have largely focused on cellular functions, whereas details on the mechanism of action has only been thoroughly investigated for a small number of lncRNAs. Nevertheless, some studies have highlighted the potential of these transcripts to contain functional domains, following the same accepted trend as proteins. Interestingly, many of these identified "domains" are attributed to functional units derived from transposable elements. Here, we review several types of functions of lncRNAs and relate these functions to lncRNA-embedded transposable elements.


Assuntos
Cromatina/genética , Elementos de DNA Transponíveis/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Regulação da Expressão Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA