Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 17408, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060819

RESUMO

Benzene, toluene, ethylbenzene and (p-, m- and o-) xylene (BTEX) are classified as main pollutants by several environmental protection agencies. In this study, a non-pathogenic, Gram-positive rod-shape bacterium with an ability to degrade all six BTEX compounds, employed as an individual substrate or as a mixture, was isolated. The bacterial isolate was identified as Bacillus amyloliquefaciens subsp. plantarum strain W1. An overall BTEX biodegradation (as individual substrates) by strain W1 could be ranked as: toluene > benzene, ethylbenzene, p-xylene > m-xylene > o-xylene. When presented in a BTEX mixture, m-xylene and o-xylene biodegradation was slightly improved suggesting an induction effect by other BTEX components. BTEX biodegradation pathways of strain W1 were proposed based on analyses of its metabolic intermediates identified by LC-MS/MS. Detected activity of several putative monooxygenases and dioxygenases suggested the versatility of strain W1. Thus far, this is the first report of biodegradation pathways for all of the six BTEX compounds by a unique bacterium of the genus Bacillus. Moreover, B. amyloliquefaciens subsp. plantarum W1 could be a good candidate for an in situ bioremediation considering its Generally Recognized as Safe (GRAS) status and a possibility to serve as a plant growth-promoting rhizobacterium (PGPR).


Assuntos
Bacillus/metabolismo , Derivados de Benzeno/metabolismo , Benzeno/metabolismo , Biodegradação Ambiental , Tolueno/metabolismo , Xilenos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
2.
J Hazard Mater ; 339: 82-90, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28628786

RESUMO

In this study, a non-pathogenic, BTEX-degrading Microbacterium esteraromaticum SBS1-7 was isolated from estuarine sediment in Thailand via an enrichment technique. M. esteraromaticum SBS1-7 was able to degrade all six BTEX components, in both liquid medium and soil slurry system, when BTEX was supplied as an individual component or a mixture. It exhibited a high level of tolerance towards a wide range of hydrocarbons and also utilized alkanes and naphthalene. Detection of metabolites produced during BTEX and naphthalene degradation revealed highly extensive biodegradation pathways used by M. esteraromaticum SBS1-7. Toluene was metabolized via activities of both monooxygenase (toluene 4-monooxygenase or T4MO) and dioxygenases (toluene dioxygenase or TDO and naphthalene 1,2-dioxygenase or NDO). Benzene was metabolized via phenol, possibly by an activity of T4MO. Ethylbenzene was converted into styrene and 1-phenethyl alcohol by a well-documented activity of NDO. Dioxidation of ethylbenzene, possibly by ethylbenzene dioxygenase or EBDO, was also found. All xylene isomers were converted into their corresponding alcohols via an activity of NDO while naphthalene was metabolized via dioxidation reaction by the same enzyme. This study is, by far, the first direct evidence of BTEX biodegradation by a non-pathogenic, rhizosphere bacterium M. esteraromaticum.


Assuntos
Actinobacteria/metabolismo , Derivados de Benzeno/metabolismo , Benzeno/metabolismo , Poluentes Ambientais/metabolismo , Tolueno/metabolismo , Xilenos/metabolismo , Actinobacteria/isolamento & purificação , Biodegradação Ambiental , Estuários , Sedimentos Geológicos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA