Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 5(3): zcad042, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37554969

RESUMO

Targeting BRCA1- and BRCA2-deficient tumors through synthetic lethality using poly(ADP-ribose) polymerase inhibitors (PARPi) has emerged as a successful strategy for cancer therapy. PARPi monotherapy has shown excellent efficacy and safety profiles in clinical practice but is limited by the need for tumor genome mutations in BRCA or other homologous recombination genes as well as the rapid emergence of resistance. In this study, we identified 2-chloro-N,N-diethylethanamine hydrochloride (CDEAH) as a small molecule that selectively kills PARP1- and xeroderma pigmentosum A-deficient cells. CDEAH is a monofunctional alkylating agent that preferentially alkylates guanine nucleobases, forming DNA adducts that can be removed from DNA by either a PARP1-dependent base excision repair or nucleotide excision repair. Treatment of PARP1-deficient cells leads to the formation of strand breaks, an accumulation of cells in S phase and activation of the DNA damage response. Furthermore, CDEAH selectively inhibits PARP1-deficient xenograft tumor growth compared to isogenic PARP1-proficient tumors. Collectively, we report the discovery of an alkylating agent inducing DNA damage that requires PARP1 activity for repair and acts synergistically with PARPi.

2.
Exp Mol Med ; 55(8): 1720-1733, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524868

RESUMO

Autophagy functions in cellular quality control and metabolic regulation. Dysregulation of autophagy is one of the major pathogenic factors contributing to the progression of nonalcoholic fatty liver disease (NAFLD). Autophagy is involved in the breakdown of intracellular lipids and the maintenance of healthy mitochondria in NAFLD. However, the mechanisms underlying autophagy dysregulation in NAFLD remain unclear. Here, we demonstrate that the hepatic expression level of Thrap3 was significantly increased in NAFLD conditions. Liver-specific Thrap3 knockout improved lipid accumulation and metabolic properties in a high-fat diet (HFD)-induced NAFLD model. Furthermore, Thrap3 deficiency enhanced autophagy and mitochondrial function. Interestingly, Thrap3 knockout increased the cytosolic translocation of AMPK from the nucleus and enhanced its activation through physical interaction. The translocation of AMPK was regulated by direct binding with AMPK and the C-terminal domain of Thrap3. Our results indicate a role for Thrap3 in NAFLD progression and suggest that Thrap3 is a potential target for NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Células Hep G2
3.
Nucleic Acids Res ; 51(15): 7936-7950, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37378431

RESUMO

Replication protein A (RPA), a eukaryotic single-stranded DNA (ssDNA) binding protein, dynamically interacts with ssDNA in different binding modes and plays essential roles in DNA metabolism such as replication, repair, and recombination. RPA accumulation on ssDNA due to replication stress triggers the DNA damage response (DDR) by activating the ataxia telangiectasia and RAD3-related (ATR) kinase, which phosphorylates itself and downstream DDR factors, including RPA. We recently reported that the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF), a neuronal protein associated with Kallmann syndrome, promotes RPA32 phosphorylation via ATR upon replication stress. However, how NSMF enhances ATR-mediated RPA32 phosphorylation remains elusive. Here, we demonstrate that NSMF colocalizes and physically interacts with RPA at DNA damage sites in vivo and in vitro. Using purified RPA and NSMF in biochemical and single-molecule assays, we find that NSMF selectively displaces RPA in the more weakly bound 8- and 20-nucleotide binding modes from ssDNA, allowing the retention of more stable RPA molecules in the 30-nt binding mode. The 30-nt binding mode of RPA enhances RPA32 phosphorylation by ATR, and phosphorylated RPA becomes stabilized on ssDNA. Our findings provide new mechanistic insight into how NSMF facilitates the role of RPA in the ATR pathway.


Assuntos
Proteínas Serina-Treonina Quinases , Proteína de Replicação A , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Replicação A/metabolismo , Humanos
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217600

RESUMO

An ideal cancer therapeutic strategy involves the selective killing of cancer cells without affecting the surrounding normal cells. However, researchers have failed to develop such methods for achieving selective cancer cell death because of shared features between cancerous and normal cells. In this study, we have developed a therapeutic strategy called the cancer-specific insertions-deletions (InDels) attacker (CINDELA) to selectively induce cancer cell death using the CRISPR-Cas system. CINDELA utilizes a previously unexplored idea of introducing CRISPR-mediated DNA double-strand breaks (DSBs) in a cancer-specific fashion to facilitate specific cell death. In particular, CINDELA targets multiple InDels with CRISPR-Cas9 to produce many DNA DSBs that result in cancer-specific cell death. As a proof of concept, we demonstrate here that CINDELA selectively kills human cancer cell lines, xenograft human tumors in mice, patient-derived glioblastoma, and lung patient-driven xenograft tumors without affecting healthy human cells or altering mouse growth.


Assuntos
Sistemas CRISPR-Cas , Mutação INDEL , Neoplasias/genética , Animais , Morte Celular/genética , Quebras de DNA de Cadeia Dupla , Xenoenxertos , Humanos , Camundongos
5.
Elife ; 102021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964438

RESUMO

Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation and imbalances in lipid metabolism in the liver. Although nuclear receptors (NRs) play a crucial role in hepatic lipid metabolism, the underlying mechanisms of NR regulation in NAFLD remain largely unclear. Methods: Using network analysis and RNA-seq to determine the correlation between NRs and microRNA in human NAFLD patients, we revealed that MIR20B specifically targets PPARA. MIR20B mimic and anti-MIR20B were administered to human HepG2 and Huh-7 cells and mouse primary hepatocytes as well as high-fat diet (HFD)- or methionine-deficient diet (MCD)-fed mice to verify the specific function of MIR20B in NAFLD. We tested the inhibition of the therapeutic effect of a PPARα agonist, fenofibrate, by Mir20b and the synergic effect of combination of fenofibrate with anti-Mir20b in NAFLD mouse model. Results: We revealed that MIR20B specifically targets PPARA through miRNA regulatory network analysis of nuclear receptor genes in NAFLD. The expression of MIR20B was upregulated in free fatty acid (FA)-treated hepatocytes and the livers of both obesity-induced mice and NAFLD patients. Overexpression of MIR20B significantly increased hepatic lipid accumulation and triglyceride levels. Furthermore, MIR20B significantly reduced FA oxidation and mitochondrial biogenesis by targeting PPARA. In Mir20b-introduced mice, the effect of fenofibrate to ameliorate hepatic steatosis was significantly suppressed. Finally, inhibition of Mir20b significantly increased FA oxidation and uptake, resulting in improved insulin sensitivity and a decrease in NAFLD progression. Moreover, combination of fenofibrate and anti-Mir20b exhibited the synergic effect on improvement of NAFLD in MCD-fed mice. Conclusions: Taken together, our results demonstrate that the novel MIR20B targets PPARA, plays a significant role in hepatic lipid metabolism, and present an opportunity for the development of novel therapeutics for NAFLD. Funding: This research was funded by Korea Mouse Phenotyping Project (2016M3A9D5A01952411), the National Research Foundation of Korea (NRF) grant funded by the Korea government (2020R1F1A1061267, 2018R1A5A1024340, NRF-2021R1I1A2041463, 2020R1I1A1A01074940, 2016M3C9A394589324), and the Future-leading Project Research Fund (1.210034.01) of UNIST.


Assuntos
Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , PPAR alfa/genética , Animais , Feminino , Humanos , Masculino , Camundongos , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , PPAR alfa/metabolismo
6.
Nucleic Acids Res ; 49(10): 5605-5622, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33963872

RESUMO

Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Fatores de Transcrição/fisiologia , Animais , Replicação do DNA , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout
7.
J Ethnopharmacol ; 278: 114238, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048878

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Vernicia fordii (Hemsl.) Airy Shaw (V. fordii) is also known as the tung tree and its leaves and fruit are used as an oriental treatment for dyspepsia, edema, and skin diseases, which are known as diabetic complications. AIM OF THE STUDY: In this study, we aimed to investigate the methanolic extract (VF5) of the leaves of V. fordii as an insulin secretagogue and its probable mechanism and verify the effect in HFD-fed mice. MATERIALS AND METHODS: The insulin secretagogue activity of different doses of VF5 (0.1, 0.3 and 1.0 µg/ml) was assessed using in vitro insulin secretion assay and confirmed the anti-diabetic effect in mice fed HFD for 4 weeks with different doses of VF5 (10, 20 and 50 mg/kg oral) for another 6 weeks. Glbenclamide (30 mg/kg, oral) was used as positive control drug. The possible mechanisms were evaluated by using Gö6983 (10 µM), U73122 (10 µM) and nifedipine (10 µM). The major constituents of VF5 were analyzed by UPLC-QToF-MS and 1H and 13C NMR spectroscopy. RESULTS: UPLC-QToF-MS and NMR spectroscopy analysis indicated that one of the main active components of VF5 was tigliane-diterpene esters. VF5 functioned as an insulin secretagogue and enhanced mitochondria respiration and insulin homeostasis. We confirmed that VF5 preserved the ß-cell and reduced the ß-cell expansion which caused by metabolic stress under HFD. The antidiabetic role of VF5 in HFD fed mice was assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT), fasting plasma insulin level, fasting blood glucose level, AKT signal in peripheral tissue in the absence of toxic effects. Mechanistically, insulinotropic effect of VF5 was mediated by activation of PKCα via intracellular Ca2+ influx and enhanced mitochondria function. CONCLUSION: VF5 exhibits potent insulin secretagogue function and improves insulin sensitivity and protection of pancreatic ß-cells from metabolic stress without toxicity. Taken together, our study suggests that VF5 could be potentially used for treating diabetes and metabolic diseases through improving ß-cell function.


Assuntos
Aleurites/química , Diabetes Mellitus Experimental/tratamento farmacológico , Secreção de Insulina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Diabetes Mellitus Experimental/fisiopatologia , Relação Dose-Resposta a Droga , Teste de Tolerância a Glucose , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/administração & dosagem , Extratos Vegetais/efeitos adversos , Estresse Fisiológico/efeitos dos fármacos
8.
Exp Mol Med ; 52(6): 940-950, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32504039

RESUMO

The endoplasmic reticulum (ER) stress response is an adaptive mechanism that is activated upon disruption of ER homeostasis and protects the cells against certain harmful environmental stimuli. However, critical and prolonged cell stress triggers cell death. In this study, we demonstrate that Flightless-1 (FliI) regulates ER stress-induced apoptosis in colon cancer cells by modulating Ca2+ homeostasis. FliI was highly expressed in both colon cell lines and colorectal cancer mouse models. In a mouse xenograft model using CT26 mouse colorectal cancer cells, tumor formation was slowed due to elevated levels of apoptosis in FliI-knockdown (FliI-KD) cells. FliI-KD cells treated with ER stress inducers, thapsigargin (TG), and tunicamycin exhibited activation of the unfolded protein response (UPR) and induction of UPR-related gene expression, which eventually triggered apoptosis. FliI-KD increased the intracellular Ca2+ concentration, and this upregulation was caused by accelerated ER-to-cytosolic efflux of Ca2+. The increase in intracellular Ca2+ concentration was significantly blocked by dantrolene and tetracaine, inhibitors of ryanodine receptors (RyRs). Dantrolene inhibited TG-induced ER stress and decreased the rate of apoptosis in FliI-KD CT26 cells. Finally, we found that knockdown of FliI decreased the levels of sorcin and ER Ca2+ and that TG-induced ER stress was recovered by overexpression of sorcin in FliI-KD cells. Taken together, these results suggest that FliI regulates sorcin expression, which modulates Ca2+ homeostasis in the ER through RyRs. Our findings reveal a novel mechanism by which FliI influences Ca2+ homeostasis and cell survival during ER stress.


Assuntos
Cálcio/metabolismo , Neoplasias Colorretais/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas dos Microfilamentos/metabolismo , Transativadores/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Neoplasias Colorretais/genética , Estresse do Retículo Endoplasmático/genética , Humanos , Immunoblotting , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Transativadores/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nutrients ; 12(3)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183397

RESUMO

: The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-α-induced NF-κB transcriptional activity in the NF-κB luciferase assay and pro-inflammatory genes' expression by blocking phosphorylation of IκB and NF-κB in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-κB phosphorylation and pro-inflammatory genes' expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes' expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/metabolismo , Anti-Inflamatórios , Broussonetia/química , Resistência à Insulina , Casca de Planta/química , Extratos Vegetais , Raízes de Plantas/química , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7
10.
Cells ; 9(2)2020 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024237

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPARγ at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPARγ at Ser273, the molecular mechanism of PPARγ dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPARγ phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPARγ at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders.


Assuntos
Diabetes Mellitus/genética , PPAR gama/metabolismo , Proteína Fosfatase 2C/metabolismo , Serina/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Resistência à Insulina/genética , Camundongos , Obesidade/genética , Fosforilação , Ligação Proteica , Proteína Fosfatase 2C/genética
11.
Exp Mol Med ; 50(10): 1-11, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323259

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent transcription factor that regulates adipocyte differentiation and glucose homeostasis. The transcriptional activity of PPARγ is regulated not only by ligands but also by post-translational modifications (PTMs). In this study, we demonstrate that a novel E3 ligase of PPARγ, tripartite motif-containing 25 (TRIM25), directly induced the ubiquitination of PPARγ, leading to its proteasome-dependent degradation. During adipocyte differentiation, both TRIM25 mRNA and protein expression significantly decreased and negatively correlated with the expression of PPARγ. The stable expression of TRIM25 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 cells. In contrast, the specific knockdown of TRIM25 increased PPARγ protein levels and stimulated adipocyte differentiation. Furthermore, TRIM25-knockout mouse embryonic fibroblasts (MEFs) exhibited an increased adipocyte differentiation capability compared with wild-type MEFs. Taken together, these data indicate that TRIM25 is a novel E3 ubiquitin ligase of PPARγ and that TRIM25 is a novel target for PPARγ-associated metabolic diseases.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular , PPAR gama/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Células 3T3-L1 , Animais , Diferenciação Celular/genética , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Estabilidade Proteica , Proteólise , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA